精英家教网 > 高中数学 > 题目详情
9.数列{an}的通项公式是an=$\frac{1}{\sqrt{n}-\sqrt{n+1}}$(n∈N+),若前n项的和为10,则项数n为(  )
A.11B.99C.120D.121

分析 运用分母有理化可得an=$\sqrt{n+1}$-$\sqrt{n}$,再由裂项相消求和可得前n项的和为Sn,由Sn,=10,解方程可得n.

解答 解:an=$\frac{1}{\sqrt{n}-\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,
前n项的和为Sn=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$+…+$\sqrt{n+1}$-$\sqrt{n}$
=$\sqrt{n+1}$-1,
由题意可得$\sqrt{n+1}$-1=10,解得n=120.
故选:C.

点评 本题考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.2log6$\sqrt{2}$+3log6$\root{3}{3}$等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在x轴、y轴上截距分别是2、-3的直线的方程为(  )
A.3x-2y+6=0B.3x+2y+1=0C.3x-2y-6=0D.3x-2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,Sn为其前n项和,若a3=8,则S5=(  )
A.16B.24C.32D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆E的中心在坐标原点,离心率为$\frac{1}{2}$,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={x|2<x<10},B={x|5-a<x<a},若A∪B=A,则实数a的取值范围是a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC中,已知a,b,c分别为角A,B,C的对边且∠A=60°,若${S_{△ABC}}=\frac{{3\sqrt{3}}}{2}$,且2sinB=3sinC,则△ABC的周长等于(  )
A.$5+\sqrt{7}$B.12C.10+$\sqrt{7}$D.5+$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)的值域是[-2,1],函数g(x)=3x2-18xf(m)+48f(n),且对任意的实数t,均有g(1+e-|t|)≥0,g(2+$\sqrt{4-{t}^{2}}$)≤0.
(1)求g(2)的值;
(2)求函数g(x)的解析式;
(3)若对任意的a∈[-2,6],恒有g(x)≥12x2-ax-42x+13.求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆对左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是(0,c).

查看答案和解析>>

同步练习册答案