【题目】已知函数,,.
(1)讨论函数的奇偶性,并说明理由;
(2)已知在上单调递减,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)设点,直线与曲线相交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为梯形,,.是的中点,底面,在平面上的正投影为点,延长交于点.
(1)求证:为中点;
(2)若,,在棱上确定一点,使得平面,并求出与面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,点,直线.
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员名
(1)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是16, 求的值
(2)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择
①请列出该客户的所有可能选择的情况
②求该客户最终聘请的家政服务员中既有A类又有B类的概率来源:学|科|网]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数相邻两对称轴间的距离为,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.
(1)求的解析式,并求的对称中心;
(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com