精英家教网 > 高中数学 > 题目详情
17.已知M={x|x=$\frac{n}{2}$,n∈Z},N={x|x=n+$\frac{1}{2}$,n∈Z},则M与N的关系为N⊆M.

分析 判断总有N的元素都是M的元素,即可得出结论.

解答 解:n为奇数2k+1,集合M的元素为x=k+$\frac{1}{2}$,k∈Z,n为偶数2k,M的元素为x=k,k∈Z.
∴总有N的元素都是M的元素,
∴N⊆M.
故答案为:N⊆M.

点评 本题考查集合的关系判断,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=-cos2x-sinx+1,若$\frac{π}{4}$<α<$\frac{π}{2}$,0<β<$\frac{π}{4}$,f($\frac{π}{4}$+α)=-$\frac{4}{25}$,f($\frac{3π}{4}$+β)=-$\frac{12}{169}$,则sin(α+β)值为$\frac{8\sqrt{42}+3}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(sin2x,cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调递增区间;
(2)若f(α)=$\frac{3}{4}$,且α∈[0,$\frac{π}{2}$],求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-3x2-3x+$\frac{1}{4}$+b2,求x∈[-b,b](b>0)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用定义法讨论函数f(x)=x+$\frac{4}{x}$在定义域上的单调性,并画出图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若对于一切实数x,y,都有f(x+y)=f(x)+f(y)成立.
(1)求f(0)的值;
(2)判断f(x)的奇偶性;
(3)若f(1)=3,求f(-3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={x|(x-a)2≤1},B={x|(x-b)2≥9},A∪B=B,则(  )
A.(a+b)2≥16B.(a+b)2≤16C.(a-b)2≥16D.(a-b)2≤16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{\sqrt{{x}^{2}-ax+3a}}$在区间[2,+∞)上是减函数,则a的取值范围是(-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四组函数中,表示同一函数的是(  )
A.y=x-1与y=$\sqrt{(x-1)^{2}}$B.y=$\sqrt{x-1}$与y=$\frac{x-1}{\sqrt{x-1}}$
C.y=$\sqrt{x-1}$•$\sqrt{x+1}$与y=$\sqrt{(x+1)(x-1)}$D.y=$\frac{x}{x}$与y=x0

查看答案和解析>>

同步练习册答案