精英家教网 > 高中数学 > 题目详情
已知双曲线ax2-4y2=1的离心率为
3
,则实数a的值为
 
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:利用双曲线的性质求解.
解答: 解:∵双曲线ax2-4y2=1的离心率为
3

1
a
+
1
4
1
a
=
3

解得a=8.
故答案为:8.
点评:本题考查实数的值的求法,是基础题,解题时要注意双曲线的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},Sn为其前n项和,a5=10,S7=56.
(1)求数列{an}的通项公式;
(2)若bn=an+(
3
 an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(a+1,b+1),Q(1,0)不重合,线段PQ与直线2x-3y+1=0有交点,给出下列命题:
①2a-3b≤0;
②当a≠0时,
b
a
既有最小值又有最大值;
③?M>0,-
1
9
-b-a2≤M恒成立;
④当a≥0时,4a<9b
⑤若b<0,则|
PQ
|取最小值时a=-
6
13

其中正确的命题是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(Ⅰ)若f(θ)=1,求cos(
2
3
π-θ)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点,其焦点为F(0,c),(0<c<2),点E(2
3
,y0),A,B都是抛物线上的点,且|EF|=4,
AF
=4
FB
,过A,B两点分别作抛物线的切线,设其焦点为M.
(1)求抛物线C的解析式;
(2)求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(log2x)2+a•log2x-2+b,当x=
1
2
时有最小值1,试确定a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y 满足不等式组
2x-y≤2
y-x≤1
x+y≥2
,若|ax-y|的最小值为0,则实数a的最小值与最大值的和等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

m
=(sinωx,cosωx)
n
=(
3
cosωx,-cosωx)(ω>0)
,记f(x)=
m
n
,已知y=f(x)图象的两条相邻对称轴之间的距离为
π
4

(Ⅰ)求ω的值;
(Ⅱ)若△ABC的内角A,B,C所对的边a,b,c满足b2=ac,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-5,0),N(5,0)是平面上的两点,若曲线C上至少存在一点P,使|PM|=|PN|+6,则称曲线C为“黄金曲线”.下列五条曲线:
y2
16
-
x2
9
=1;
x2
4
+
y2
9
=1;          
x2
4
-
y2
9
=1;
④y2=4x;
⑤x2+y2=9.
其中为“黄金曲线”的是
 
.(写出所有“黄金曲线”的序号)

查看答案和解析>>

同步练习册答案