精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
4
x+1,x≤1
lnx,x>1
,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(  )(注:e为自然对数的底数)
A、(0,
1
e
B、[
1
4
1
e
]
C、(0,
1
4
D、[
1
4
,e]
考点:分段函数的应用
专题:函数的性质及应用
分析:由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.
解答:解:∵方程f(x)=ax恰有两个不同实数根,
∴y=f(x)与y=ax有2个交点,
又∵a表示直线y=ax的斜率,
∴y′=
1
x

设切点为(x0,y0),k=
1
x0

∴切线方程为y-y0=
1
x0
(x-x0),
而切线过原点,∴y0=1,x0=e,k=
1
e

∴直线l1的斜率为
1
e

又∵直线l2与y=
1
4
x+1平行,
∴直线l2的斜率为
1
4

∴实数a的取值范围是[
1
4
1
e
).
故选:B.
点评:本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个图中,哪个可能是函数y=
10ln|x+1|
x+1
的图象(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

定义区间[x1,x2]的长度为x2-x1.若函数y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为(  )
A、
15
2
B、
15
4
C、3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求方程lgx=3-x的近似解,可以取的一个区间是(  )
A、(0,1)B、(1,2)C、(2,3)D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
31-x,x≤1
1-log3x,x>1
,则满足f(x)≤3的x的取值范围是(  )
A、[0,+∞)
B、[-1,3]
C、[0,3]
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x, x∈[0,1)
-(0.5)|x-1.5| , x∈[1,2)
若x∈[-4,-2)时,f(x)≤
t
4
-
1
2t
有解,则实数t的取值范围是(  )
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≥4
f(x+2),x<4
,则f(1+log23)的值为(  )
A、6B、12C、24D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x         (x≤0)
log2x   (x>0)
,若函数y=f(x)-a有一个零点,则实数a的取值范围时
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,VA垂直⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是(  )
A、MN∥ABB、MN与BC所成的角为45°C、OC⊥平面VACD、平面VAC⊥平面VBC

查看答案和解析>>

同步练习册答案