【题目】已知数列{an}中,a2=2,其前n项和Sn满足: (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn .
【答案】解:(Ⅰ)由题意有 .
所以 ,则有 (n≥2),
所以2(Sn﹣Sn﹣1)=nan﹣(n﹣1)an﹣1,
即(n﹣2)an=(n﹣1)an﹣1(n≥2).
所以(n﹣1)an+1=nan,
两式相加得2(n﹣1)an=(n﹣1)(an+1+an﹣1),即2an=an+1+an﹣1(n≥2),
即an+1﹣an=an﹣an﹣1(n≥2,n∈N),
故数列{an}是等差数列.
又a1=0,a2=2,所以公差d=2,
所以数列{an}的通项公式为an=2n﹣2.
(Ⅱ)由(Ⅰ)知 ,
则 …+n22n﹣2,
两边同乘以22得 +…+(n﹣1)22n﹣2+n22n,
两式相减得 +22n﹣2﹣n22n,
即 = ,
所以
【解析】(I)利用数列递推关系、等差数列的定义及其通项公式即可得出.(II)利用错位相减法、等比数列的求和公式即可得出.
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F 是棱 PA上的一个动点,E为PD的中点.
(Ⅰ)若 AF=1,求证:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 与平面 PCD所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知ω为正整数,函数f(x)=sinωxcosωx+ 在区间 内单调递增,则函数f(x)( )
A.最小值为 ,其图象关于点 对称
B.最大值为 ,其图象关于直线 对称
C.最小正周期为2π,其图象关于点 对称
D.最小正周期为π,其图象关于直线 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为 (t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ﹣α)=2sin(α+ ).
(Ⅰ)求证:l1⊥l2
(Ⅱ)设点A的极坐标为(2, ),P为直线l1 , l2的交点,求|OP||AP|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是偶函数,f(x+1)是奇函数,且对任意的x1 , x2∈[0,1],且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0,设a=f( ),b=﹣f( ),c=f( ),则下列结论正确的是( )
A.a>b>c
B.b>a>c
C.b>c>a
D.c>a>b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com