精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

1)若上存在极值点,求a的取值范围;

2)设,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由

【答案】12a)存在最大值,且最大值为

【解析】

1求出函数的导数,将题意转换为上有解,由上递增,得,求出的范围即可;

2求出函数的导数,得到,求出a,根据函数的单调性求出a)的最大值即可.

解:1

由题意得,上有根(不为重根),

上有解,

上递增,得

检验,时,上存在极值点,

2

,即上满足

上递减,

不存在最大值,则

方程2个不相等的正实数根,

令其为,且不妨设

递减,在递增,在递减,

对任意,有

对任意,有

a

代入上式,消去得:

a

递增,得

,即递增,

e

a)存在最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.

(1)等待开垦土地的面积;

(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA⊥平面ABCABBCPAABDPB中点,PC3PE.

1)求证:平面ADE⊥平面PBC

2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).

(1)根据以上数据完成下列列联表:

主食蔬菜

主食肉类

总计

50岁以下

50岁以上

总计

(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.

参考公式和数据:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求方程的实数解;

)如果数列满足),是否存在实数,使得对所有的都成立?证明你的结论.

)在()的条件下,设数列的前项的和为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考查某种药物预防疾病的效果,随机抽查了50只服用药的动物和50只未服用药的动得知服用药的动物中患病的比例是,未服用药的动物中患病的比例为.

(I)根据以上数据完成下列2×2列联表:

患病

未患病

总计

服用药

没服用药

总计

(II)能否有99%的把握认为药物有效?并说明理由.

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案