精英家教网 > 高中数学 > 题目详情
已知命题p:a<1且a≠0,命题q:一元二次方程ax2+2x+1=0(a≠0)至少有一个负的实数根,则p是q的(  )
分析:①若命题p成立,则有a<1且a≠0,利用一元二次方程根与系数的关系可得可得,此一元二次方程一定有两个不相等的实数根,且两根之和与两根之积异号,故此至少有
一个负的实数根,故命题q 成立.②若命题q成立,通过举反例可得则命题p不一定成立,由此得出结论.
解答:解:①若命题p成立,则有a<1且a≠0,
∴一元二次方程ax2+2x+1=0的判别式△=4-4a>0,故此一元二次方程一定有两个不相等的实数根.
再由两根之和 x1+x2=-
2
a
,两根之积 x1•x2=
1
a
,可得两根之和与两根之积 异号,
故一元二次方程ax2+2x+1=0(a≠0)至少有一个负的实数根,故命题q 成立.
②若命题q成立,则命题p不一定成立,例如当a=1时,一元二次方程ax2+2x+1=0即 x2+2x+1=0,有一个负根为x=-1,
此时,显然命题p不成立.
故由命题q成立不能推出命题p成立.
综合①②可得p是q的 充分不必要条件,
故选A.
点评:本题主要考查一元二次方程根的分布与系数的关系,充分条件、必要条件、充要条件的定义,通过举反例来说明某个命题不正确,是一种简单有效的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:A={x|
ax-4
x-2
>0}
,命题q:B={x|m<x<2m+1}.
(1)若a≥2,求关于x的不等式
ax-4
x-2
>0
的解集A;
(2)若a=-2且¬p是¬q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:曲线
x=-1+3cosθ
y=2+3sinθ
,(θ
为参数)所围成图形的面积被直线y=-2x平分;命题q:若抛物线x2=ay上一点P(x0,2)到焦点的距离为3,则a=2.那么下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知命题p:a<1且a≠0,命题q:一元二次方程ax2+2x+1=0(a≠0)至少有一个负的实数根,则p是q的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充分必要条件
  4. D.
    既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省抚顺三中高考数学二模试卷(理科)(解析版) 题型:选择题

已知命题p:a<1且a≠0,命题q:一元二次方程ax2+2x+1=0(a≠0)至少有一个负的实数根,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案