精英家教网 > 高中数学 > 题目详情
15、定义在R上的奇函数Lf(x)满足.(x+2)=-f(x)且当0≤x≤1时f(x)=x则这个函数是以
4
为周期的周期函数,且f(7,5)=
-0.5
分析:根据函数的奇偶性以及f(x+2)=-f(x)可求出函数的周期,再结合当0≤x≤1时f(x)=x,利用函数的周期性即可求得f(7,5)的值.
解答:解:∵函数y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),
∵f(x+2)=-f(x)对一切x∈R都成立,∴f(x-4)=f(x),
∴函数y=f(x)是以4为周期的周期函数.
∵f(7.5)=f(-0.5)=-f(0.5)=-0.5
故答案为:4;-0.5.
点评:本题考查了函数的奇偶性和周期性,以及运用函数的奇偶性和周期性求函数解析式及函数值.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列判断中:
①f(x)是定义在R上的奇函数,则f(0)=0必成立;
②y=2x与y=log2x互为反函数,其图象关于直线y=x对称;
③f(x)是定义在R上的偶函数,则f(x)=f(|x|)=f(-x)必成立;
④当a>0且a≠l时,函数f(x)=ax-2-3必过定点(2,-2);
⑤函数f(x)=lgx2,必为偶函数.
其中正确的结论为
①②③④⑤
①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,满足f(x-2)=-f(x).当x∈[-1,1]时,f(x)=x3,则下列四个命题:
①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3
③函数y=f(x)的图象关于x=l对称; ④函数y=f(x)的图象关于点(3,0)对称.
其中正确的命题序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)定义在R上的奇函数f(x)满足f(1-x)=f(x)且x∈[0,l]时,f(x)=
2x4x+1

(Ⅰ)求函数f(x)在[-l,l]上的解析式;
(II)当λ为何值时,关于x的方程f(x)=λ在[-2,2]上有实数解?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省许昌市长葛三高高三调研数学试卷(文科)(解析版) 题型:填空题

设f(x)是定义在R上的奇函数,满足f(x-2)=-f(x).当x∈[-1,1]时,f(x)=x3,则下列四个命题:
①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3
③函数y=f(x)的图象关于x=l对称; ④函数y=f(x)的图象关于点(3,0)对称.
其中正确的命题序号是   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省镇平一高高三下学期第四次周考文科数学试卷 题型:选择题

设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x) >0的x的取值范围是

    A. (-l,0)        B.(-1,0)∪(1,-∞)

    C.(1,+∞)     D.(-∞,-1)∪(1,-∞)

 

查看答案和解析>>

同步练习册答案