精英家教网 > 高中数学 > 题目详情

已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

(1) f(x)=x3+2x2-4x+5; (2) b≥0

解析试题分析:(1)先由函数导数的几何意义用含a,b,c的代数式表达出函数在点P处的切线方程,再与已知的切线相比较可得关于a,b,c的两个方程;另又因为y=f(x)在x=-2时有极值,所以f′(-2)=0再得到一个关于a,b,c的方程,三个字母三个方程,通过解方程组就可求得字母a,b,c的值,从而求得f(x)的表达式; (2) 由函数y=f(x)在区间[-2,1]上单调递增,知其导函数f′(x)在[-2,1]上恒有f′(x)≥0,注意到(1)中的①式:2a+b=0,所以有,从而有3x2-bx+b≥0在[-2,1]上恒成立,分离参数转化为函数的最值问题,可求得b的取值范围.
试题解析:(1)由f(x)=x3+ax2+bx+c,求导数得f′(x)=3x2+2ax+b,
过y=f(x)上点P(1,f(1))的切线方程为:y-f(1)=f′(1)(x-1),
即y-(a+b+c+1)=(3+2a+b)(x-1)
而过y=f(x)上P(1,f(1))的切线方程为:y=3x+1

又∵y=f(x)在x=-2时有极值,故f′(-2)=0 ∴-4a+b=-12③
由①②③相联立解得a=2,b=-4,c=5,所以f(x)=x3+2x2-4x+5
(2)y=f(x)在区间[-2,1]上单调递增
又f′(x)=3x2+2ax+b,由(1)知2a+b=0
∴f′(x)=3x2-bx+b
依题意f′(x)在[-2,1]上恒有f′(x)≥0,即3x2-bx+b≥0在[-2,1]上恒成立
注意到,所以3x2-bx+b≥0在[-2,1]上恒成立等价于:,令知当,当,所以在[-2,1)上有最大值为,故知,且当x=1时f′(x)≥0也成立,所以
考点:1.导数的几何意义;2.函数的极值与最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,在点处的切线方程是(e为自然对数的底)。
(1)求实数的值及的解析式;
(2)若是正数,设,求的最小值;
(3)若关于x的不等式对一切恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(1)当时,求函数y=f(x)的极值;
(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图像过原点,且在点处的切线与轴平行,对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是函数的极值点,求曲线在点处的切线方程;
(2)若函数上为单调增函数,求的取值范围;
(3)设为正实数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明不等式ex>x+1>㏑x,x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)若的单调减区间是,求实数a的值;
(2)若对于定义域内的任意x恒成立,求实数a的取值范围;
(3)设有两个极值点, 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若上的最小值记为.
(1)求
(2)证明:当时,恒有.

查看答案和解析>>

同步练习册答案
鍏� 闂�