精英家教网 > 高中数学 > 题目详情
用4种不同的颜色涂入如图四个小矩形中,要求相邻矩形的涂色不得相同,则不同的涂色方法共有
 
考点:计数原理的应用
专题:排列组合
分析:本题是一个分步计数问题,把所给的四个矩形编号,首先涂1有C41=4种涂法,则涂2有C31=3种涂法,3与A1,2相邻,则3有C21=2种涂法,4只与3相邻,则4有C31=3种涂法.
解答: 解:根据题意本题是一个分步计数问题,把所给的四个矩形编号
首先涂1有C41=4种涂法,则涂2有C31=3种涂法,
3与A1,2相邻,则3有C21=2种涂法,
4只与3相邻,则4有C31=3种涂法.
所以根据分步计数原理知共有4×3×2×3=72种涂法,
故答案为:72
点评:本题考查计数原理的应用,本题解题的关键是分析题目时时要按一定顺序,由相邻情况来确定可以涂色的情况数目,最后根据分步计数原理得到结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若任意满足
x-y≤0
x+y-5≥0
y-3≤0
的实数x,y,不等式a(x2+y2)≤(x+y)2恒成立,则实数a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是椭圆
x2
25
+
y2
9
=1上的动点,F1、F2是椭圆上的两个焦点,求sin∠F1PF2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)在R上有定义,f(x-y)=f(x)g(y)-g(x)f(y)对任意的实数x,y都成立,且f(1)=f(2)≠0,则g(1)+g(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=1,
1,n=1
kan-1+2,n>1
,则
(1)当k=1时,求数列{an}的前n项和sn
(2)当k=2时,证明数列{an+2}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出所有由1,2,3,4,5组成的没有重复数字,且个位数字是5的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一长为24米的篱笆,一面利用墙(墙最大长度是 10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,
(1)求出y关于x的函数解析式,并指出x的取值范围;
(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=2cos(
π
3
x+
1
2
)的图象作怎样的变换可以得到y=cosx的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2,g(x)=2x-m,若对任意x1∈[-1,3],总存在x2∈[0,2],使f(x1)≥g(x2)成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案