精英家教网 > 高中数学 > 题目详情
设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为
3
双曲线,则λ的值为(  )
A、2
B、-2
C、3
D、
3
分析:根据题意可分别表示出动点P与两定点的连线的斜率,根据其之积为常数,求得x和y的关系式,对k的范围进行分类讨论,看k>0根据圆锥曲线的标准方程可推断出离心率,从而求得λ的值.
解答:解:依题意可知
y
x+a
y
x-a
=λ,整理得y2-λx2=-λa2
当λ>0时,方程的轨迹为双曲线,
x 2
a 2
-
y 2
λa 2
=1

∴b2=λa2,c=
a 2+λa 2
=
(λ+1)a 2

∴e=
c
a
=
λ+1
|a|
|a|
=
λ+1
=
3

∴λ=2
故选A
点评:本题主要考查了圆锥曲线的综合.考查了学生对圆锥曲线标准方程的考查和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,已知椭圆C0
x2
a2
+
y2
b2
=1(a>b>0,a,b为常数)
,动圆C1x2+y2=
t
2
1
,b<t1<a
.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2x2+y2=
t
2
2
与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为数学公式双曲线,则λ的值为


  1. A.
    2
  2. B.
    -2
  3. C.
    3
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2010年天津市十二区县重点学校高三联考数学试卷1(理科)(解析版) 题型:选择题

设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为双曲线,则λ的值为( )
A.2
B.-2
C.3
D.

查看答案和解析>>

同步练习册答案