精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=lnx-x2+ax,
(1)当x∈(1,+∞)时,函数f(x)为递减函数,求a的取值范围;
(2)设f'(x)是函数f(x)的导函数,x1,x2是函数f(x)的两个零点,且x1<x2,求证$f'({\frac{{{x_1}+{x_2}}}{2}})<0$
(3)证明当n≥2时,$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{lnn}>1$.

分析 (1)求出函数的导数,问题转化为即a≤2x-$\frac{1}{x}$恒成立,求出a的范围即可;
(2)求出a,得到f′($\frac{{x}_{1}{+x}_{2}}{2}$)=$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$,问题转化为证明$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$>ln$\frac{{x}_{1}}{{x}_{2}}$,令t=$\frac{{x}_{1}}{{x}_{2}}$,∵0<x1<x2,∴0<t<1,即证明u(t)=$\frac{2(1-t)}{1+t}$+lnt<0在0<t<1上恒成立,根据函数的单调性证明即可;
(3)令a=1,得到lnx≤x2-x,得到x>1时,$\frac{1}{lnx}$>$\frac{1}{x(x-1)}$,分别令x=2,3,4,5,…n,累加即可.

解答 (1)解:∵x∈(1,+∞)时,函数f(x)为递减函数,
∴f′(x)=$\frac{1}{x}$-2x+a≤0在(1,+∞)恒成立,
即a≤2x-$\frac{1}{x}$恒成立,
而y=2x-$\frac{1}{x}$在(1,+∞)递增,
故2x-$\frac{1}{x}$>1,
故a≤1;
(2)证明:∵f(x)的图象与x轴交于两个不同的点A(x1,0),B(x2,0),
∴方程lnx-x2+ax=0的两个根为x1,x2
则 lnx1-${{x}_{1}}^{2}$+ax1=0,①,lnx2-${{x}_{2}}^{2}$+ax2=0,②,
两式相减得a=(x1+x2)-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$,
又f(x)=lnx-x2+ax,f′(x)=$\frac{1}{x}$-2x+a,
则f′($\frac{{x}_{1}{+x}_{2}}{2}$)=$\frac{2}{{x}_{1}{+x}_{2}}$-(x1+x2)+a=$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$,
要证$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$<0,
即证明$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$>ln$\frac{{x}_{1}}{{x}_{2}}$,
令t=$\frac{{x}_{1}}{{x}_{2}}$,∵0<x1<x2,∴0<t<1,
即证明u(t)=$\frac{2(1-t)}{1+t}$+lnt<0在0<t<1上恒成立,
∵u′(t)=$\frac{{(t-1)}^{2}}{{t(t+1}^{2}}$,
又0<t<1,∴u'(t)>0,
∴u(t)在(0,1)上是增函数,则u(t)<u(1)=0,
从而知$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$<0,
故f′($\frac{{{x}_{1}+x}_{2}}{2}$)<0成立;
(3)证明:令a=1,由(1)得:f(x)在(1,+∞)递减,
∴f(x)=lnx-x2+x≤f(1)=0,
故lnx≤x2-x,
x>1时,$\frac{1}{lnx}$>$\frac{1}{x(x-1)}$,
分别令x=2,3,4,5,…n,
故$\frac{1}{ln2}$+$\frac{1}{ln3}$+…+$\frac{1}{lnn}$>$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n-1)}$=1-$\frac{1}{n}$,
∴$\frac{1}{ln2}$+$\frac{1}{ln3}$+…+$\frac{1}{lnn}$>1-$\frac{1}{n}$,
即左边>1-$\frac{1}{n}$>1,得证.

点评 本题考查了利用导数研究函数的单调性极值与最值、考查通过研究函数的单调性解决问题的方法,考查了转化能力、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在长方体ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小为$\frac{π}{6}$,若空间一条直线l与直线CC1所成的角为$\frac{π}{4}$
,则直线l与平面A1BD所成的角的取值范围是(  )
A.$[\frac{π}{12},\frac{5π}{12}]$B.$[\frac{π}{4},\frac{5π}{12}]$C.$[\frac{π}{12},\frac{π}{2})$D.$[\frac{π}{6},\frac{π}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)解不等式log${\;}_{\frac{1}{2}}$(x+2)>-3 
(2)计算:($\frac{1}{8}$)${\;}^{\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=sinxcosx-\sqrt{3}{cos^2}x$的图象可由函数$g(x)=sin(2x+\frac{π}{3})-\frac{{\sqrt{3}}}{2}$的图象向右平移k(k>0)个单位得到,则k的最小值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对终端框叙述正确的是(  )
A.表示一个算法的起始和结束,程序框是
B.表示一个算法输入和输出的信息,程序框是
C.表示一个算法的起始和结束,程序框是
D.表示一个算法输入和输出的信息,程序框是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在梯形ABCD中,AD∥BC,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使得平面ABE1F1⊥平面ABCD,M为AF1上一点,如图2.

(I)求证:BE1⊥DC;
(II)求证:DM∥平面BCE1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程$\frac{x^2}{k-2}+\frac{y^2}{5-k}$=1表示双曲线的一个充分不必要条件是(  )
A.2<k<5B.k>4C.k<1D.k<2或k>5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直角坐标系xOy中,以坐标原点O为圆心的圆与直线$y=x+2\sqrt{2}$相切.
(1)求圆O的方程;
(2)圆O与x轴交于A,B两点,圆内动点P,使得|PA|,|PO|,|PB|成等比数列,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ab<0,bc<0,则直线ax+by+c=0通过(  ) 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

同步练习册答案