精英家教网 > 高中数学 > 题目详情
4.下列命题中正确的个数是(  )
①过异面直线a,b外一点P有且只有一个平面与a,b都平行;
②异面直线a,b在平面α内的射影相互垂直,则a⊥b;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④直线a,b分别在平面α,β内,且a⊥b,则α⊥β.
A.0B.1C.2D.3

分析 列举反例,即可得出结论.

解答 解:①P是异面直线a、b外一点,则过P有一个平面与a、b都平行;此命题不正确,当过点P与两条异面直线中的一条的平面与另一条直线平行时,此时找不到一个过P的平面与两条异面直线都平行,不正确;
②本命题用图形说明,如图:

三棱锥P-ABC中,侧棱PB垂直于底面,PA,PC两线在底面上的投影垂直,而两线不垂直,不正确;
③四边相等的四边形也可以是空间四边形,不正确;
④直线a,b分别在平面α,β内,且a⊥b,则α、β不一定垂直,不正确.
故选:A.

点评 本题考查命题真假的判断,考查了空间中线线位置关系,线面位置关系,两异面直线的关系等,正确解答本题,关键是要有着较好的空间立体感知能力,能对命题所涉及的问题找到恰当的模型做载体进行判断.本题是训练空间感知能力的一道好题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数g(x)=3x,h(x)=9x
(1)解方程:h(x)-8g(x)-h(1)=0;
(2)令$p(x)=\frac{g(x)}{{g(x)+\sqrt{3}}}$,求$p(\frac{1}{2014})+p(\frac{2}{2014})+…+p(\frac{2012}{2014})+p(\frac{2013}{2014})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是实数集R上的奇函数,且f(h(x)-1)+f(2-k•g(x))>0对任意实数x恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${[(1-\sqrt{2}){\;}^2]^{\frac{1}{2}}}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.mn>0是$\frac{x^2}{m}+\frac{y^2}{n}$=1表示椭圆的必要不充分条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax-3-3(a>0,a≠1)的图象恒过定点(3,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,$\overrightarrow{BA}$=(cos16°,sin16°),$\overrightarrow{BC}$=(2sin29°,2cos29°),则△ABC面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x≤3,x∈R},B={x|x-1≥0,x∈N},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:mx-y=4,若直线l与直线x-(m+1)y=1垂直,则m的值为-$\frac{1}{2}$; 若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,则m的值为±2.

查看答案和解析>>

同步练习册答案