精英家教网 > 高中数学 > 题目详情

【题目】若一条直线a与平面α内的一条直线b所成的角为30°,则下列说法正确的是(  )

A. 直线a与平面α所成的角为30° B. 直线a与平面α所成的角大于30°

C. 直线a与平面α所成的角小于30° D. 直线a与平面α所成的角不超过30°

【答案】D

【解析】

根据题意,作出图形如图所示.由直线与平面所成角的定义,得到ab所成角的最小值等于最大值等于90°.由此得到本题的答案.

设直线a在平面α的射影为直线c,在平面α内作直线dc,由三垂线定理可得直线da.

设直线a与平面α所成的角为

∴直线a与直线c所成的角为,等于平面α内的直线与直线a所成角的最小值.

直线b在平面α内,当b与直线d平行或重合时,可得ab,直线ab所成的角为90°,达到最大值;

b与直线c平行或重合时,可得a、b所成的角为,达到最小值.

因此,直线ab所成的角为φ的取值范围为φ90°.

因为直线a与平面α内的一条直线b所成的角为30°

直线a与平面α所成的角不超过30°,

故答案为:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ab≠0,求证ab=1的充要条件是a3b3aba2b2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知平面内一动点P到点F(1,0)的距离与点Py轴的距离的差等于1.

(1)求动点P的轨迹C的方程;

(2)过点F作两条斜率存在且互相垂直的直线l1l2,设l1与轨迹C相交于点ABl2与轨迹C相交于点DE,求·的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(1)求M;
(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是(  )
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折线P1 P2…Pn+1 , 求由该折线与直线y=0,x=x1 , x=xn+1所围成的区域的面积Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 的夹角为120°,且| |=2,| |=3,则向量2 +3 在向量2 + 方向上的投影为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

同步练习册答案