已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.
科目:高中数学 来源: 题型:解答题
已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
(3)设点、是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(1)求抛物线的方程;
(2) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点、和、,且满足,其中为常数,过点作的平行线交椭圆于、两点.
(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点.
(1)求曲线的方程;
(2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为,的面积为,令,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知抛物线:过点,直线交于,两点,过点且平行于轴的直线分别与直线和轴相交于点,.
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com