精英家教网 > 高中数学 > 题目详情

已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.

4, (1,2).

解析试题分析:设点P在准线上的射影为D,由抛物线的定义把问题转化为求PA+PD的最小值,同时可推断出当D,P,A三点共线时PA+PD最小,答案可得.
设点P在准线上的射影为D,记抛物线y2=2x的焦点为F(1,0),准线l是x= -1,由抛物线的定义知点P到焦点F的距离等于它到准线l的距离,即PF=PD  ,
因此PA +PF="PA+" PDAD="4," 即当D,P,M三点共线时PA+PD最小,此时P(1,2).
考点:抛物线的简单性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
(3)设点是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为常数,过点的平行线交椭圆于两点.

(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点和点
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点
 
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.

查看答案和解析>>

同步练习册答案