精英家教网 > 高中数学 > 题目详情

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

【答案】D

【解析】

由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以为首项,为公比的等比数列的前17项的和,再由等比数列前项和公式求解即可.

解:根据题意,

当孩子18岁生日时,孩子在一周岁生日时存入的元产生的本利合计为

同理:孩子在2周岁生日时存入的元产生的本利合计为

孩子在3周岁生日时存入的元产生的本利合计为

孩子在17周岁生日时存入的元产生的本利合计为

可以看成是以为首项,为公比的等比数列的前17项的和,

此时将存款(含利息)全部取回,

则取回的钱的总数:

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l 椭圆C 分别为椭圆的左右焦点.

1)当直线l过右焦点时,求C的标准方程;

2)设直线l与椭圆C交于AB两点,O为坐标原点,若∠AOB是钝角,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三梭柱ABCA1B1C1中,ACBCEF分别为ABA1B1的中点.

1)求证:AF∥平面B1CE

2)若A1B1,求证:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中的值;

(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

I) 取出的3件产品中一等品件数X的分布列和数学期望;

II) 取出的3件产品中一等品件数多于二等品件数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

1)求函数的单调区间;

2)是否存在整数,对于任意,关于的方程在区间上有唯一实数解?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后的函数图象.

给出下列四种说法:

①图(2)对应的方案是:提高票价,并提高成本;

②图(2)对应的方案是:保持票价不变,并降低成本;

③图(3)对应的方案是:提高票价,并保持成本不变;

④图(3)对应的方案是:提高票价,并降低成本.

其中,正确的说法是____________.(填写所有正确说法的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自726日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在730800830开始放映,小明和同学大约在740830之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案