精英家教网 > 高中数学 > 题目详情

已知点和圆是圆的直径,的三等分点,(异于)是圆上的动点,,直线交于,则当     时,为定值.

 

【答案】

【解析】

试题分析:设,则…①

…②  由①②得

代入,得.由,得到

考点:向量的共线和数量积

点评:解决的关键是利用向量的共线以及圆的方程来得到P的坐标,进而得到参数的值,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l1:y=2x+m(m<0)与抛物线C1:y=ax2(a>0)和圆C2:x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到
2
倍后得到点Q(x,
2
y
)满足
AQ
BQ
=1

(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且满足
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2015届浙江绍兴一中高二第一学期期中测试理科数学试卷(解析版) 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;

(Ⅱ)试探究是否存在这样的点是圆内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积?若存在,求出点的坐标,若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江绍兴一中高二第一学期期中测试文科数学试卷(解析版) 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;

(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数

的点称为整点),求出点的坐标.

 

查看答案和解析>>

同步练习册答案