精英家教网 > 高中数学 > 题目详情
3.已知抛物线C:y2=8x焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,O是坐标原点,若$\overrightarrow{FP}=4\overrightarrow{FQ}$,则|QO|=(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.3

分析 抛物线C:y2=8x的焦点为F(2,0),设P(-2,t),Q(x,y).利用$\overrightarrow{FP}=4\overrightarrow{FQ}$,可得(-4,t)=4(x-2,y),解得(x,y),代入y2=8x可得t2=128,再利用两点之间的距离公式即可得出.

解答 解:抛物线C:y2=8x的焦点为F(2,0),
设P(-2,t),Q(x,y).
∵$\overrightarrow{FP}=4\overrightarrow{FQ}$,∴(-4,t)=4(x-2,y),
∴$\left\{\begin{array}{l}{x=1}\\{y=\frac{t}{4}}\end{array}\right.$,代入y2=8x可得t2=128.
∴|QO|=$\sqrt{1+\frac{{t}^{2}}{16}}$=3.
故选:D.

点评 本题考查了抛物线的标准方程及其性质、向量的坐标运算、两点之间的距离公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求数列{bn}的通项公式;
(2)令${c_n}={e^{-{b_n}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某销售代理商主要代理销售新京报、北京晨报、北京青年报三种报刊.代理商统计了过去连续100天的销售情况,数据如下:
20002100220023002400
新京报1015303510
北京晨报182040202
北京青年报352520155
三种报刊中,日平均销售量最大的报刊是新京报;如果每份北京晨报的销售利润分别为新京报的1.5倍,北京青年报的1.2倍,那么三种报刊日平均销售利润最大的报刊是北京晨报.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中心在坐标原点,对称轴为坐标轴的双曲线C过点$P(3,\sqrt{5})$,离心率为$\sqrt{2}$.
(1)求双曲线C的方程;
(2)过C的左顶点A引C的一条渐近线的平行线l,求直线l与另一条渐近线及x轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈(1,+∞),log3(x+2)-$\frac{2}{{2}^{x}}$>0,则下列叙述正确的是(  )
A.¬p为:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$≤0B.¬p为:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$<0
C.¬p为:?x∈(-∞,1],log3(x+2)-$\frac{2}{2^x}$≤0D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[-1,1]上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A(-1,0),B(1,0),动点M满足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|•cos2θ=3,设M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过A的直线l1与曲线C交于E、F两点,过B与l1平行的直线l2与曲线C交于G、H两点,求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知e为自然对数的底数,若对任意的x1∈[0,1],总存在唯一的x2∈[-1,1],使得x1+x22•e${\;}^{{x}_{2}}$-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.(1,e]C.(1+$\frac{1}{e}$,e]D.[1+$\frac{1}{e}$,e]

查看答案和解析>>

同步练习册答案