精英家教网 > 高中数学 > 题目详情
20.定义在R上的函数f(x)满足f(x+2)=f(x),且f(-x)=-f(x),当x∈(0,1)时,f(x)=$\frac{2^x}{{{4^x}+1}}$,
(1)求f(x)在[-1,1]上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明;
(3)当k取何值时,方程f(x)=k在[-1,1]上有解.

分析 (1)设x∈(-1,0)则-x∈(0,1)结合f(-x)=-f(x),及x∈(0,1)时,$f(x)=\frac{2^x}{{{4^x}+1}}$,可求x∈(-1,0)时得f(x),在f(-x)=-f(x)中可求f(0)=0
(2)利用函数的单调性的定义证明即可.
(3)利用基本不等式求出函数的值域,然后求解k的范围.

解答 解:(1)设x∈(-1,0)则-x∈(0,1)
∵?x∈R,f(-x)=-f(x),且x∈(0,1)时,$f(x)=\frac{2^x}{{{4^x}+1}}$,
∴x∈(-1,0)时,有f(x)=-f(-x)=-$\frac{{2}^{-x}}{{4}^{-x}+1}$=-$\frac{{2}^{x}}{{4}^{x}+1}$.
在f(-x)=-f(x)中,令x=0,f(-0)=-f(0)⇒f(0)=0.
综上:当x∈(-1,1)时,有:f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}}{{4}^{x}+1},x∈(0,1)}\\{0,x=0}\\{-\frac{{2}^{x}}{{4}^{x}+1},x∈(-1,0)}\end{array}\right.$.
(2)f(x)在(0,1)上是减函数,
证明:设0<x1<x2<1则x2-x1>0,0<x1+x2<2,∴${2}^{{x}_{1}+{x}_{2}}$>1,${2}^{{x}_{2}}>{2}^{{x}_{1}}$.
∴f(x2)-f(x1)=$\frac{{2}^{{x}_{2}}}{{4}^{{x}_{2}+1}}$-$\frac{{2}^{{x}_{1}}}{{4}^{{x}_{1}}+1}$=$\frac{({2}^{{x}_{1}}-{2}^{{x}_{2}})({2}^{{x}_{1}+{x}_{2}}-1)}{({4}^{{x}_{1}}+1)({4}^{{x}_{2}}+1)}$<0,
∴f(x2)<f(x1
∴f(x)在(0,1)上是减函数.
(3)由已知可得:$\frac{{2}^{x}}{{4}^{x}+1}$=k,k=$\frac{{2}^{x}}{{4}^{x}+1}$=$\frac{1}{{2}^{x}+\frac{1}{{2}^{x}}}$,x∈[-1,1],2x∈[$\frac{1}{2}$,2],$\frac{1}{{2}^{x}+\frac{1}{{2}^{x}}}$≤$\frac{1}{2\sqrt{{2}^{x}•\frac{1}{{2}^{x}}}}$=$\frac{1}{2}$,当且仅当x=0时,表达式取得最大值,当x=±1时,k=$\frac{2}{5}$,
方程f(x)=k在[-1,1]上有解,k∈[$\frac{2}{5}$,$\frac{1}{2}$].

点评 本题主要考查了利用函数的性质求解函数的解析式,解题中不要漏掉x=0时的函数得解析式,利用函数的单调性的定义证明函数得单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=xa的图象过点(2,4),则a=2.若b=loga3,则2b+2-b=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.小明骑车上学,一路匀速行驶,只是在途中遇到了一次交通堵塞,耽搁了一些时间.与以上事物吻合得最好的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$为常数.
(1)若f(x)为奇函数,求实数m的值;
(2)判断f(x)在R上的单调性,并用单调性的定义予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,终边在坐标轴上的角α的集合是{α|α=$\frac{nπ}{2}$,n∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数的一个“可等域区间”.给出下列四个函数:①f(x)=|x|;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=log2(2x-2).其中存在唯一“可等域区间”的“可等域函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆O:x2+y2=4与y轴正半轴的交点为M,点M沿圆O顺时针运动$\frac{π}{2}$弧长到达点N,以x轴的非负半轴为始边,ON为终边的角记为α,则tanα=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={-1,0,1},B=(-∞,0),则A∩B={-1}.

查看答案和解析>>

同步练习册答案