精英家教网 > 高中数学 > 题目详情

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

(1)求关于的线性回归方程;

(2)通过(1)中的方程,求出关于的回归方程;

(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

【答案】(1)(2);(3)千亿元.

【解析】

(1)利用题目所给数据和回归直线方程计算公式,直接求得回归直线方程.(2)代入(1)求得的方程,化简后可得关于的回归直线方程.(3)代入(2)求得的回归直线方程,可求得预测值.

解:(1)

所以.

(2)

代入得到:

(3)当时,

所以预测到年年底,该地储蓄存款额可达千亿元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出的结果是(

A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x﹣5)2+y2=9的两条切线,切点为M,N,|MN|=3
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (a>b>0)的图象是曲线C.

(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1 , A2
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:等比数列{}中,公比为q,且a1=2,a4=54,等差数列{}中,公差为db1=2,b1+b2+b3+b4=a1+ a2+ a3.

(I)求数列{}的通项公式;

(II)求数列{}的前n项和的公式;

(III)设,其中n=1,2,…,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某市民众对某项公共政策的态度,在该市随机抽取了名市民进行调查,做出了他们的月收入(单位:百元,范围:)的频率分布直方图,同时得到他们月收入情况以及对该项政策赞成的人数统计表:

(1)求月收入在内的频率,并补全这个频率分布直方图,并在图中标出相应纵坐标;

(2)根据频率分布直方图估计这人的平均月收入;

(3)若从月收入(单位:百元)在的被调查者中随机选取人,求人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.

(1)请确定入口F的选址范围;
(2)设商业区的面积为S1 , 绿化区的面积为S2 , 商业区的环境舒适度指数为 ,则入口F如何选址可使得该商业区的环境舒适度指数最大?

查看答案和解析>>

同步练习册答案