精英家教网 > 高中数学 > 题目详情
已知f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数f(x)=kx+k+1(k∈R且k≠1)有4个零点,则k的取值范围是
 
分析:先根据函数f(x)的周期性以及x∈[0,1]时,f(x)的解析式,求在区间[-1,3]内,f(x)的图象,函数f(x)=kx+k+1(k∈R且k≠1)有4个零点,也即,函数f(x)与y=kx+k+1图象有4个交点,再求k为何值时,函数f(x)与y=kx+k+1图象有4个交点即可.
解答:解:∵f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,
∴f(x)的图象为折线,且当x∈[-1,0]时,图象与x∈[0,1]时图象关于y轴对称,
若函数f(x)=kx+k+1(k∈R且k≠1)有4个零点,即函数f(x)与y=kx+k+1图象有4个交点,
y=kx+k+1为过定点(-1,1)的直线,要想与f(x)有4个交点,只要介于(-1,1)和(2,0)连线,与(-1,1)和(3,1)连线之间即可,
求(-1,1)和(2,0)连线斜率为-
1
3
,求(-1,1)和(3,1)连线斜率为0,
∴k的取值范围是 (-
1
3
,0)
故答案为(-
1
3
,0)
点评:本体考查了函数零点的判断,做题时注意转换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是以2为周期的偶函数,当x∈[0,1],f(x)=x,那么在区间[-1,3]内,关于x的方程y=kx+k+1(其中k为不等于1的实数)有四个不同的实根,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内,关于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4个不同的根,则k的取值范围是(  )
A、(-
1
4
,0)
B、(-1,0)
C、(-
1
2
,0)
D、(-
1
3
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,若关于x的方程f(x)=kx+k+1在[-1,3]内恰有四个不同的根,则实数k的取值范围是
(-
1
3
,0)
(-
1
3
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宿州三模)已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内关于x的f(x)=kx+k+1(k∈R,且k≠1)方程的根的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是以2为周期的函数,且当x∈[1,3]时,f(x)=4x+log2x,则f(-1)=
 

查看答案和解析>>

同步练习册答案