【题目】已知﹣ <x<0,则sinx+cosx= .
(I)求sinx﹣cosx的值;
(Ⅱ)求 的值.
【答案】解:(Ⅰ)由sinx+cosx= ,平方得sin2x+2sinxcosx+cos2x= ,
即2sinxcosx=﹣ .
∵(sinx﹣cosx)2=1﹣2sinxcosx= .
又∵﹣ <x<0,∴sinx<0,cosx>0,sinx﹣cosx<0,
故sinx﹣cosx=﹣ .
(Ⅱ) = =sinxcosx(2﹣cosx﹣sinx)
=(﹣ )×(2﹣ )=﹣
【解析】(Ⅰ)把sinx+cosx= 两边平方求得sinxcosx的值,进而根据∵(sinx﹣cosx)2=1﹣2sinxcosx求得(sinx﹣cosx)2=,进而根据﹣ <x<0确定sinx﹣cosx的正负,求得答案.(Ⅱ)先把原式中的正切转换成弦,进而根据倍角公式化简整理,把(1)中求得的sinxcosx和sinx﹣cosx代入即可得到答案.
【考点精析】本题主要考查了同角三角函数基本关系的运用的相关知识点,需要掌握同角三角函数的基本关系:;;(3) 倒数关系:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中圆C的参数方程为 (α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是( )
A.(﹣1,﹣ )
B.(0, )
C.(﹣ ,0)
D.( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若f(x)=sin(2x+φ)+b,对任意实数x都有f(x+ )=f(﹣x),f( )=﹣1,则实数b的值为( )
A.﹣2或0
B.0或1
C.±1
D.±2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点 ,且经过点 ,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方)
(1)求椭圆C的方程;
(2)若|AM|=2|MB|,且直线l与圆 相切于点N,求|MN|的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数列{an},如果k∈N*及λ1 , λ2 , …,λk∈R,使an+k=λ1an+k﹣1+λ2an+k﹣2+…+λkan成立,其中n∈N* , 则称{an}为k阶递归数列.给出下列三个结论: ①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为 ,则{an}为3阶递归数列.
其中,正确结论的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,给定两个平面单位向量 和 ,它们的夹角为120°,点C在以O为圆心的圆弧AB上,且 (其中x,y∈R),则满足x+y≥ 的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.
(1)求证:DE∥平面BCC1B1;
(2)求DE与平面ABC所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com