【题目】设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是 .
【答案】(﹣2,0)∪(2,+∞)
【解析】解:设g(x)= ,则g(x)的导数为:
g′(x)= ,
∵当x>0时总有xf′(x)﹣f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(﹣x)= = = =g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(﹣2)= =0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,
∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).
故答案为:(﹣2,0)∪(2,+∞).
构造函数g(x),利用g(x)的导数判断函数g(x)的单调性与奇偶性,求出不等式的解集即可.
科目:高中数学 来源: 题型:
【题目】(本题满分12分) 已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中。
(1)求点M不在x轴上的概率;
(2)求点M正好落在区域上的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)过点A(﹣ , ),离心率为 ,点F1 , F2分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0 , 当x>x0时,就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分, 内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.
(1)求被调查者满意或非常满意该项目的频率;
(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;
(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若(2x+ )100=a0+a1x+a2x2+…+a100x100 , 则(a0+a2+a4+…+a100)2﹣(a1+a3+a5+…+a99)2的值为( )
A.1
B.﹣1
C.0
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com