精英家教网 > 高中数学 > 题目详情
已知曲线
x2
8-λ
+
y2
4-λ
=1(4<λ<8),则此曲线的焦点坐标为(  )
A、(±2,0)
B、(±2
3
,0)
C、(0,±2)
D、(±
12-2λ
,0)
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由4<λ<8,将曲线方程整理成双曲线方程,再由双曲线的a,b,c的关系,即可求得焦点坐标.
解答: 解:由4<λ<8,
x2
8-λ
+
y2
4-λ
=1可整理为
x2
8-λ
-
y2
λ-4
=1,
则c2=8-λ+λ-4=4,
故焦点坐标为(±2,0).
故选A.
点评:本题考查双曲线的方程和性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知π<θ<
2
,cosθ=-
4
5
,则cos
θ
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区的年降水量在下列范围内概率如下表所示:
(1)求年降水量在[100,200]范围内的概率;
(2)求年降水量在[150,300]范围内的概率;
年降水量[100,150)[150,200)[200,250)[250,300)
概率0.120.250.160.14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=4an-p,其中p为非零常数.
(1)求证:数列{an}成等比数列;
(2)若a2=
4
3
,数列{bn}满足bn+1=bn+an,b1=2,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-1|<2的解集是(  )
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、(-1,3)
D、(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

底面是正方形,侧面是全等的等腰三角形的四棱锥,其5个顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为(  )
A、
81π
4
B、16π
C、9π
D、
27π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若a1、a2、a3、…an的方差为3,则2(a1-3),2(a2-3),2(a3-3),…2(a8-3)的方差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市新城区有7条南北向街道,5条东西向街道(如图).
(1)图中共有多少个矩形?
(2)从左下角A点到右上角B点最近的走法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6,求∠BAC.

查看答案和解析>>

同步练习册答案