【题目】若函数的图象上存在两个不同的点、,使得曲线在这两点处的切线重合,称函数具有性质.下列函数中具有性质的有( )
A.B.C.D.
【答案】BD
【解析】
根据题意可知性质指函数的图象上有两个不同点的切线是重合的,分析各选项中函数的导函数的单调性与原函数的奇偶性,数形结合可判断A、B选项的正误;利用导数相等,求解方程,可判断C、D选项的正误.综合可得出结论.
由题意可得,性质指函数的图象上有两个不同点的切线是重合的,即两个不同点所对应的导数值相等,且该点处函数的切线方程也相等.
对于A选项,,则,导函数为增函数,不存在不同的两个使得导数值相等,所以A不符合;
对于B选项,函数为偶函数,,
令,可得或,如下图所示:
由图象可知,函数在和处的切线重合,所以B选项符合;
对于C选项,设两切点分别为和,则两切点处的导数值相等有:,解得:,令,则,
两切点处的导数,两切点连线的斜率为,则,得,两切点重合,不符合题意,所以C选项不符合;
对于D选项,,设两切点得横坐标分别为和,
则,所以,
取,,则,,
两切点处的导数值为,两切点连线的直线斜率为,
所以两切点处的导数值等于两切点连线的斜率,符合性质,所以D选项符合.
故选:BD.
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取人做调查,得到列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 40 | ||
女生 | 30 | ||
合计 | 100 |
且已知在个人中随机抽取人,抽到喜欢游泳的学生的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,是否有的把握认为喜欢游泳与性别有关?并说明你的理由.
附:(其中)和临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.45 | 0.708 | 1.32 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年中央电视台在周日晚上推出的一档新的综艺节目,为了解节目效果,一次节目结束后,现随机抽取了名观众(含名女性)的评分(百分制)进行分析,分别得到如图所示的两个频率分布直方图.
(1)计算女性观众评分的中位数与男性观众评分的平均分;
(2)若把评分低于分定为“不满意”,评分不低于分定为“满意”.
(i)试比较男观众与女观众不满意的概率大小,并说明理由;
(ii)完成下列列联表,并回答是否有的把握认为性别和对该综艺节目是否满意有关.
女性观众 | 男性观众 | 合计 | |
“满意” | |||
“不满意” | |||
合计 |
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若曲线在点处的切线与直线垂直,求函数的极值;
(2)设函数.当=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com