精英家教网 > 高中数学 > 题目详情
函数y=f′(x)的图象如图所示,则f(x)的解析式可能是(  )
分析:首先观察函数的图象,y=f′(x)与x轴的交点即为f(x)的极值点,然后可得导函数解析式,从而求出函数f(x)的解析式,得到正确选项.
解答:解:由图可以看出函数y=f′(x)在x=0和-2点为0,
故可设y=f′(x)=ax(x+2)=ax2+2ax
∴f(x)=
1
3
ax3+ax2+b
取a=1,b=0即为选项B,满足条件,其它选项不满足条件.
故选:B.
点评:会观察函数的图象并从中提取相关信息,并熟练掌握函数与其导数的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

先作函数y=lg
1
1-x
的图象关于原点对称的图象,再将所得图象向右平移一个单位得图象C1,又函数y=f(x)的图象C2与C1关于直线y=x对称,则函数y=f(x)的解析式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为(-1,1),并且对一切x,y∈(-1,1)恒有f(x)+f(y)=f(x+y);且当x>0时,f(x)<0;
(1)判断该函数的奇偶性;
(2)判断并证明该函数的单调性;
(3)若f(1-m)+f(1-m2)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.
x -1 0 4 5
f(x) 1 2 2 1
下列关于f(x)的命题:
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是
①②⑤
①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域是R,值域是[0,
1
2
];
②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期是1;
则其中真命题是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象过原点且它的导函数y=f'(x)的图象是如图所示的一条直线,y=f(x)的图象的顶点在(  )

查看答案和解析>>

同步练习册答案