【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比;
(4)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率.
【答案】(1)48;(2)见解析;(3);(4)18,.
【解析】分析:(1)根据最右边一组的频数是6,而频率等于该组的面积再整个图形中的百分比,因此可得样本容量;
(2)根据频率直方图进行分组,求出频率和频数,画出表格即可;
(3)用样本估计总体,在样本中算出、、、这四个组占总数的百分比,就可以估计出成绩高于60分的学生占总人数的百分比;
(4)根据图中矩形面积最大的一组就是人数最多的组,由此找出最高的矩形,在这一组,再用公式求出其频数、频率.
详解:(1)样本容量为:.
(2)由(1)知样本容量为48,
∴第一组频数为,第二组频数为,第三组频数为,第四组频数为,第五组频数为.
分组 | 频数 | 频率 |
3 | ||
9 | ||
18 | ||
12 | ||
6 |
(3)估计成绩高于60分的学生占总人数的百分比为:;
(4)成绩在内的人数最多,频数为18,频率为.
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别是长轴长为2 的椭圆C: + =1(a>b>0)的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣ .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣ ,0),求线段AB长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-1+x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地级市共有中学生,其中有学生在年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助元、元、元.经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有转为一般困难学生,特别困难的学生中有转为很困难学生.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取时代表年,取时代表年,……依此类推,且与(单位:万元)近似满足关系式.(年至年该市中学生人数大致保持不变)
(1)估计该市年人均可支配年收入为多少万元?
(2)试问该市年的“专项教育基金”的财政预算大约为多少万元?
附:对于一组具有线性相关关系的数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x , 下列命题正确的有 . (写出所有正确命题的编号)
①f(x)是奇函数;
②f(x)在R上是单调递增函数;
③方程f(x)=x2+2x有且仅有1个实数根;
④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com