精英家教网 > 高中数学 > 题目详情

【题目】某甲篮球队的12名队员(含2名外援)中有5名主力队员(含一名外援),主教练要从12名队员中选5人首发上场,则主力队员不少于4人,且有一名外援上场的概率是_____

【答案】

【解析】

由题意可得:基本事件总数为,主力队员不少于4人,即5名队员中有主力队员4人或者5人,并且其选法分别为种、1种,进而根据等可能事件的概率公式可得答案.

由题意可得:主教练要从12名队员中选5人首发上场不同的选法有:种.

因为主力队员不少于4人,所以5名队员中有主力队员4人或者5人,

当从12名队员中选5人首发上场其中主力队员为4人并且有一名外援上场时,不同的选法共有种;

当从12名队员中选5人首发上场其中主力队员为5人并且有一名外援上场时,不同的选法共有1种,

所以主力队员不少于4人,且有一名外援上场的选法共有26种,

所以主力队员不少于4人,且有一名外援上场的概率为:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合是由一些函数组成,满足如下性质:对任意均存在反函数,且对任意,方程均有解;对任意,若函数为定义在上的一次函数,则.

1)若,均在集合中,求证:函数

2)若函数)在集合中,求实数的取值范围;

3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量,两组向量均由23排列而成,记表示所有可能取值中的最小值,则下列命题中

15个不同的值;(2)若无关;(3)若,则无关;(4)若,则;(5)若,则的夹角为.正确的是(  )

A.1)(2B.2)(4C.3)(5D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了配合今年上海迪斯尼乐园工作,某单位设计了统计人数的数学模型,以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以15分钟为一个计算单位,上午915分作为第1个计算人数单位,即930分作为第2个计算单位,即;依次类推,把一天内从上午9点到晚上815分分成45个计算单位(最后结果四舍五入,精确到整数).

1)试计算当天14点至15点这1小时内进入园区的游客人数、离开园区的游客人数各为多少?

2)从1345分(即)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+|x﹣a|

1)当a=1时,求函数fx)的最小值;

2)试讨论函数fx)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:

月份

1

2

3

4

5

月销售单价(元)

1.6

1.8

2

2.2

2.4

月销售量(百件)

10

8

7

6

4

1)根据15月份的数据,求出关于的回归直线方程;

2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)

(回归直线方程,其中.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,若,则称收缩数列”.其中,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列收缩数列”.

1)若,求的前项和;

2)证明:收缩数列仍是

3)若,求所有满足该条件的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,MAB的中点.

1)求证:;

2)求二面角的余弦值;

3)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案