【题目】某甲篮球队的12名队员(含2名外援)中有5名主力队员(含一名外援),主教练要从12名队员中选5人首发上场,则主力队员不少于4人,且有一名外援上场的概率是_____.
【答案】
【解析】
由题意可得:基本事件总数为,主力队员不少于4人,即5名队员中有主力队员4人或者5人,并且其选法分别为种、1种,进而根据等可能事件的概率公式可得答案.
由题意可得:主教练要从12名队员中选5人首发上场不同的选法有:种.
因为主力队员不少于4人,所以5名队员中有主力队员4人或者5人,
当从12名队员中选5人首发上场其中主力队员为4人并且有一名外援上场时,不同的选法共有种;
当从12名队员中选5人首发上场其中主力队员为5人并且有一名外援上场时,不同的选法共有1种,
所以主力队员不少于4人,且有一名外援上场的选法共有26种,
所以主力队员不少于4人,且有一名外援上场的概率为:.
故答案为:.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.
(1)若,,均在集合中,求证:函数;
(2)若函数()在集合中,求实数的取值范围;
(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个不相等的非零向量,两组向量和均由2个和3个排列而成,记,表示所有可能取值中的最小值,则下列命题中
(1)有5个不同的值;(2)若则与无关;(3)若,则与无关;(4)若,则;(5)若,,则与的夹角为.正确的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了配合今年上海迪斯尼乐园工作,某单位设计了统计人数的数学模型,以表示第个时刻进入园区的人数;以表示第个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即;9点30分作为第2个计算单位,即;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天14点至15点这1小时内进入园区的游客人数、离开园区的游客人数各为多少?
(2)从13点45分(即)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价(元) | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量(百件) | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出关于的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程,其中.参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列,,若-…,则称是的“收缩数列”.其中,,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列是的“收缩数列”.
(1)若,求的前项和;
(2)证明:的“收缩数列”仍是;
(3)若,求所有满足该条件的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,,,M是AB的中点.
(1)求证:;
(2)求二面角的余弦值;
(3)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com