已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,
(1)求动点P的轨迹方程;
(2)设M(0,-1),若斜率为k(k≠0)的直线l与P点的轨迹交于不同的两点A、B,若要使|MA|=|MB|,试求k的取值范围.
科目:高中数学 来源: 题型:
x2 |
4 |
y2 |
5 |
P1P2 |
3 |
4 |
3 |
2 |
OP1 |
OP2 |
查看答案和解析>>
科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修1-1) 题型:044
已知双曲线C以x±y=0为渐近线,且过点A(3,2).
(1)求双曲线C的标准方程;
(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:学习周报 数学 人教课标版高二(A选修2-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修2-1) 题型:044
已知双曲线C以x±y=0为渐近线,且过点A(3,2).
(1)求双曲线C的标准方程;
(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴.已知a=1,b=2,p=2,求点Q的坐标。
⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。
⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
(上海卷理20)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴已知a=1,b=2,p=2,求点Q的坐标.
⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上.
⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com