精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=1-a0a≠1)是定义在(-∞+∞)上的奇函数.

1)求a的值;

2)证明:函数fx)在定义域(-∞+∞)内是增函数;

3)当x∈(01]时,tfx≥2x-2恒成立,求实数t的取值范围.

【答案】1a=22)见解析(3[0+∞).

【解析】

1)由于上的奇函数,利用性质,即可求出的值.

2)利用定义法即可证明的单调性.

3)利用分离参数法,然后构造函数,利用换元法,结合其单调性,即可求出最大值,从而求出的范围.

解:(1)函数)是定义在上的奇函数,

,解得:,经检验满足.

2)证明:设为定义域上的任意两个实数,且,则

,即

∴函数在定义域内是增函数;

3)由(1)得,当时,

∴当时,恒成立,

等价于对任意的恒成立,

,即

时成立,即上的最大值,

易知上单增

∴当有最大值

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: mm )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 x 和样本方差 (同一组中的数据用该组区间的中点值作代表);

(Ⅱ)若该批零件尺寸 服从正态分布 ,其中 近似为样本平均数 近似为样本方差 ,利用该正态分布求

(Ⅲ)若从生产线中任取一零件,测量尺寸为30mm,根据 原则判断该生产线是否正常?

附: ;若 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥平面ABCDMAD的中点,NPC的中点.

1)求证:MN∥平面PAB

2)若平面PMC⊥平面PAD,求证:CMAD

3)若平面ABCD是矩形,PA=AB,求证:平面PMC⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场调查发现,某种产品在投放市场的30天中,其销售价格(元)和时间(天)的关系如图所示.

(1)求销售价格(元)和时间(天)的函数关系式;

(2)若日销售量(件)与时间(天)的函数关系式是 ,问该产品投放市场第几天时,日销售额(元)最高,且最高为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量(其中),记,且满足.

(1)求函数的解析式;

(2)若关于的方程上有三个不相等的实数根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某单位职工的月收入情况画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息,解答下列问题.

(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽取多少人?

(2)试估计样本数据的中位数与平均数.

查看答案和解析>>

同步练习册答案