精英家教网 > 高中数学 > 题目详情
函数y=
x-3
的定义域是(  )
分析:直接由根式内部的代数式大于等于0求解x的取值集合得答案.
解答:解:由x-3≥0,得x≥3.
∴函数y=
x-3
的定义域是[3,+∞).
故选:B.
点评:本题考查了函数的定义域及其求法,是基础的会考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义[x]:表示不超过实数x的最大整数,如[π]=3,,[-1.09]=-2,并定义{x}=x-[x].如{3.14}=0.14,{-1.01}=0.99,有以下命题:
①函数y={x}的定义域为R,值域为[0,1];
②方程{x}=
12
有无数多个解;
③函数y={x}为周期函数;
④关于实数x的方程ln2x-[lnx]-2=0的解有3个.
其中你认为正确的所有命题的序号为
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有
②③
②③
(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{0,
3
3
,1
}的函数图象向下平移2个单位,得到的新函数的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
3
分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{1,-2b,b2+
1
2
}的函数图象的有交点,求满足条件的实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{数学公式}的函数图象向下平移2个单位,得到的新函数的解析式是________; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=数学公式分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{数学公式}的函数图象的有交点,求满足条件的实数b的取值范围.

查看答案和解析>>

同步练习册答案