精英家教网 > 高中数学 > 题目详情

平面直角坐标系xoy中,动点满足:点P到定点与到y轴的距离之差为.记动点P的轨迹为曲线C

1)求曲线C的轨迹方程;

2)过点F的直线交曲线CAB两点,过点A和原点O的直线交直线D,求证:直线DB平行于x轴.

 

【答案】

1,(2)详见解析.

【解析】

试题分析:(1)求动点轨迹方程,首先设动点坐标,本题已设,其次列动点满足条件,然后利用坐标化简关系式,即,最后要考虑动点满足限制条件,本题为已知条件,另外本题对条件的化简也可从抛物线的定义上理解,这样更快,(2)证明直线平行于轴,可利用斜率为零,或证明纵坐标相等,总之都需要从坐标出发.注意到点在抛物线上,设点的坐标可简洁,的坐标为 ,利用三点共线解出点的纵坐标为,根据直线直线的交解出的纵坐标.

试题解析:1)依题意: 2

4

6

注:或直接用定义求解.

2)法1:设,直线的方程为

8

直线的方程为 的坐标为 2

直线平行于. 14

2:设的坐标为,则的方程为

的纵坐标为8

直线的方程为

的纵坐标为. 12

轴;当时,结论也成立,

直线平行于. 14

考点:轨迹方程,直线与抛物线位置关系

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,“方程
x2
k-1
+
y2
k-3
=1
表示焦点在x轴上的双曲线”的充要条件是k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,Pn(n,n2)(n∈N+)是抛物线y=x2上的点,△OPnPn+1的面积为Sn
(1)求Sn
(2)化简
1
S1
+
1
S2
+…+
1
Sn

(3)试证明S1+S2+…+Sn=
n(n+1)(n+2)
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy中,A(4+2
3
,2),B(4,4)
,圆C是△OAB的外接圆.
(1)求圆C的方程;
(2)若过点(2,6)的直线l被圆C所截得的弦长为4
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的参数方程为:
x=-2+
3
5
t
y=2+
4
5
t
(t为参数),它与曲线C:(y-2)2-x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为(2
2
4
)
,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,已知矩形ABCD的两边AB,CD分别落在x轴、y轴的正半轴上,且AB=2,AD=4,点A与坐标原点重合.现将矩形折叠,使点A落在线段DC上,若折痕所在的直线的斜率为k,试写出折痕所在直线的方程及k的范围.

查看答案和解析>>

同步练习册答案