精英家教网 > 高中数学 > 题目详情
15.已知定义在R上的函数f(x)满足f(x)=-f(x+1),若f(1)=2,求f(2015),f(2016)的值.

分析 由已知可得函数f(x)是周期为5的周期函数,故f(2016)=f(1)=2.

解答 解:∵f(x)=-f(x+1),
∴f(x+2)=f[(x+1)+1]=-f(x+1)=f(x),
故函数f(x)是周期为2的周期函数,
故f(2015)=f(1)=2,
f(2016)=f(0)=-f(1)=-2.

点评 本题考查的知识点是函数的周期性,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a+a-1=5,求a2+a-2和a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)满足f(cosx)=$\frac{1}{2}$x(0≤x≤π),求f(cos$\frac{4π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1a2…an=1-an,n∈N•.
(1)证明:{$\frac{1}{1{-a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)记Tn=a1a2…an(n∈N*),Sn=${{T}_{1}}^{2}$+${{T}_{2}}^{2}$+…+${{T}_{n}}^{2}$,证明:an+1-$\frac{1}{2}$<Sn<$\frac{2}{3}$an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证:π是函数f(x)=sinxcosx(x∈R)的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知Rt△ABC的斜边两端点分别是B(0,4),C(0,-2),则顶点A的轨迹方程是x2+y2-2y-8=0(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=1og2sin(2x+$\frac{π}{4}$)的单调递增区间和单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)对一切实数x都满足f(1+x)=f(1-x),且当x∈(-∞,1]时f(x)=2x,若f(m)$>\frac{1}{2}$,则m的取值范围为-1<m<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=\frac{{\sqrt{4-{2^x}}}}{x-1}$的定义域为{x|x≤2且x≠1}.

查看答案和解析>>

同步练习册答案