精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2-x和函数$g(x)={log_{\frac{1}{2}}}$x,则函数f(x)与g(x)的图象关于(  )对称.
A.x轴B.y轴C.直线y=xD.原点

分析 利用反函数关于直线y=x对称,推出结果即可.

解答 解:因为函数f(x)=2-x和函数$g(x)={log_{\frac{1}{2}}}$x互为反函数,所以两个函数的图象关于y=x对称,
故选:C.

点评 本题考查函数与反函数的关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不过原点的直线l是曲线y=1nx的切线,且直线l与x轴、y轴的截距之和为0,则直线l的方程为x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)当a=-1时,在所给坐标系中作出f(x)的图象;
(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=-x+14图象的下方,求实数a的取值范围;
(Ⅲ)若关于x的方程f(x)+1=0在区间(-1,0)内有两个相异根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=-x3+2ax2-a2x(x∈R),其中a∈R
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a=3时,求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)请你举2个满足“对定义域内任意实数a,b,都有f(a•b)=f(a)+f(b)”的函数的例子;
(2)请你举2个满足“对定义域内任意实数a,b,都有f(a+b)=f(a)•f(b)”的函数的例子;
(3)请你举2个满足“对定义域内任意实数a,b,都有f(a•b)=f(a)•f(b)”的函数的例子.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点P(2,1),Q(-2,-2),过点(0,5)的直线l与线段PQ有公共点,则直线l的斜率k的取值范围是k≤-2或k≥$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知具有线性相关的两个变量x,y之间的一组数据如表:
x01234
y2.24.34.54.8t
且回归方程是$\widehat{y}$=0.95x+2.6,则t=(  )
A.6.7B.6.6C.6.5D.6.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的个数是(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的否命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③存在实数x0,使x02+x0+1<0;
④命题“若m>1,则x2-2x+m=0有实根”的逆否命题是真命题.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案