精英家教网 > 高中数学 > 题目详情

将一块直角三角板ABO置于平面直角坐标系中(如图所示).已知AB=OB=1,AB⊥OB,点P 是三角板内一点.现因三角板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN.问应如何确定直线MN的斜率,可使锯成的△AMN的面积最大?

当斜率为-时,SAMN(max)=


解析:

由题意可知B(1,0),A(1,1),

kOP=,kPB=-

∴kMN,lAO:y=x;lAB:x=1.

设lMN:y=kx+b,

∵直线MN过P

∴b=k,∴y=kx+.

∴M,N

SAMN=×

设t=1-k∈.

SAMN=在t∈时,函数单调递增.

∴当t=,即k=-时,SAMN(max)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将一块直角三角板ABO(45o角)置于直角坐标系中,已知AB=OB=1,AB⊥OB,点P(
1
2
1
4
)
是三角板内一点,现因三角板中部分受损坏(△POB),要把损坏的部分锯掉,可用经过P的任意一直线MN将其锯成△AMN,问如何确定直线MN的斜率,才能使锯成的△AMN的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,
12
)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年高三强化班数学寒假作业(直线及其方程)(解析版) 题型:解答题

将一块直角三角板ABO(45o角)置于直角坐标系中,已知AB=OB=1,AB⊥OB,点是三角板内一点,现因三角板中部分受损坏(△POB),要把损坏的部分锯掉,可用经过P的任意一直线MN将其锯成△AMN,问如何确定直线MN的斜率,才能使锯成的△AMN的面积最大?

查看答案和解析>>

科目:高中数学 来源:《直线与方程》2013年山西省高考数学一轮单元复习(解析版) 题型:解答题

将一块直角三角板ABO(45o角)置于直角坐标系中,已知AB=OB=1,AB⊥OB,点是三角板内一点,现因三角板中部分受损坏(△POB),要把损坏的部分锯掉,可用经过P的任意一直线MN将其锯成△AMN,问如何确定直线MN的斜率,才能使锯成的△AMN的面积最大?

查看答案和解析>>

同步练习册答案