【题目】已知函数f(x)=a(x+lnx)(a>0),g(x)=x2 .
(1)若f(x)的图象在x=1处的切线恰好也是g(x)图象的切线.求实数a的值;
(2)对于区间[1,2]上的任意两个不相等的实数x1 , x2且x1<x2 , 都有f(x2)﹣f(x1)<g(x2)﹣g(x1)成立.试求实数a的取值范围.
【答案】
(1)解:函数f(x)=a(x+lnx)(a>0), ,
∴x=1,f'(1)=2a,切点为(1,a),
∴切线方程为y﹣a=2a(x﹣1),即y=2ax﹣a,
又联立 ,消去y,可得x2﹣2ax+a=0,△=4a2﹣4a=0,
∴a=1
(2)解:由条件可知:f(x2)﹣g(x2)<f(x1)﹣g(x1)(x1<x2),
设F(x)=f(x)﹣g(x),即F(x)=a(x+lnx)﹣x2,
∴F(x)在[1,2]上单调递减,∴ 在[1,2]上恒成立,
即 在[1,2]上恒成立,∵ ,
∴a≤1,又由条件知a>0,0<a≤1从而即为所求
【解析】(1)对f(x)进行求导,找到在点(1,a)的切线方程,与g(x)联立,根据只有一个交点,解出a的值,(2)设F(x)=f(x)﹣g(x),即F(x)=a(x+lnx)﹣x2,F(x)在[1,2]上单调递减,F ' ( x )0 在[1,2]上恒成立,参变分离后,求出a的取值范围即可.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数
(1)判断函数f(x)的奇偶性,并说明理由;
(2)证明:f(x)在(﹣1,+∞)上为增函数;
(3)证明:方程f(x)=0没有负数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a2﹣3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)﹣f(﹣x)的奇偶性,并加以证明
(3)解不等式:loga(1﹣x)>loga(x+2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为函数y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象的一部分,其中点 是图象的一个最高点,点 是与点P相邻的图象与x轴的一个交点.
(1)求函数f(x)的解析式;
(2)若将函数f(x)的图象沿x轴向右平移 个单位,再把所得图象上每一点的横坐标都变为原来的 (纵坐标不变),得到函数y=g(x)的图象,求函数y=g(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面 是菱形, , 平面 , , , , 是 中点.
(I)求证:直线 平面 .
(II)求证:直线 平面 .
(III)在 上是否存在一点 ,使得二面角 的大小为 ,若存在,确定 的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7 .
(Ⅱ)2017年5月,北京召开“一带一路”国际合作高峰论坛.组委会将甲、乙、丙、丁、戊五名志愿者分配到翻译、导游、礼仪、司机四个不同的岗位,每个岗位至少有一人参加,且五人均能胜任这四个岗位.
(i)若每人不准兼职,则不同的分配方案有几种?
(ii)若甲乙被抽调去别的地方,剩下三人要求每人必兼两职,则不同的分配方案有几种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函数f(x)的对称轴方程;
(Ⅱ)将函数f(x)的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移 个单位,得到函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com