精英家教网 > 高中数学 > 题目详情
若一个几何体的三视图如图所示,则其体积为(  )
A、5πB、6πC、7πD、8π
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知的三视图可得:该几何体是一个以俯视图为底面的柱体,分别求出底面面积和高,代入柱体体积公式,可得答案.
解答: 解:由已知的三视图可得:该几何体是一个以俯视图为底面的柱体,
其底面面积S=π(22-12)=3π,
高h=2,
故体积V=Sh=3π×2=6π,
故选:B
点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx•(2cosx-sinx)+cos2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)设
π
4
<α<
π
2
,且f(α)=-
5
2
13
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax+b的值域为A,关于x的不等式f(x)<c的解集为B.
(1)若a=4,b=-2.c=3,求集合A与B;
(2)若A=[0,+∞),B=(m,m+6),求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx的图象与g(x)=cosx的图象关于某条直线对称,这条直线可以是(  )
A、x=
4
B、x=
2
C、x=-
2
D、x=-
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某几何体的三视图,则该几何体的体积为(  )
A、256+128π
B、256+64π
C、64+64π
D、64+32π

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=6cos2
ωx
2
+
3
ωx
2
+
3
sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
-i
1-i
=(  )
A、-
1
2
-
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin
θ
2
-2cos
θ
2
=0,则tanθ=
 

查看答案和解析>>

同步练习册答案