精英家教网 > 高中数学 > 题目详情
若数列{an}由a1=2,an+1=an+2n(n≥1)确定,则a100的值是(    )

A.9 900               B.9 902                C.9 904             D.10 100

B

解析:a n+1-an=2n,故a100-a99=2×99,

a99-a98=2×98,…,a2-a1=2×1.

∴相加得a100-a1=2(1+2+…+99)

=2×=9 900.

∴a100=9 902.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、若数列{an}由a1=2,an+1=an+2n(n≥1),确定,则a100的值为
9902

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}由a1=2,an+1=an+2n(n≥1)确定,则a100的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}由a1=2,an+1=an+2n(n≥1)确定,求通项公式an
 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年辽宁省沈阳市东陵区翔宇中学高三(上)9月月考数学试卷(理科)(解析版) 题型:填空题

若数列{an}由a1=2,an+1=an+2n(n≥1),确定,则a100的值为    

查看答案和解析>>

同步练习册答案