【题目】设函数f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)< x有解,求实数a的取值范围.
【答案】
(1)解:由log2f(x)>2对任意x∈R恒成立,得f(x)>4对任意x∈R恒成立,
即|x+2|+|x﹣a|>4对任意x∈R恒成立,
也就是(|x+2|+|x﹣a|)min>4对任意x∈R恒成立,
由|x+2|+|x﹣a|≥|(x+2)﹣(x﹣a)|=|2+a|,
得|2+a|>4,即2+a<﹣4或2+a>4,解得a<﹣6或a>2,
∵a<0,∴a<﹣6
(2)解:∵a>0,
∴f(x)=|x+2|+|x﹣a|= ,
画出函数y=f(x)与y= 的图象如图,
由图可知,要使关于x的不等式f(x)< x有解,则 ,解得a>4
【解析】(1)利用绝对值的不等式求得f(x)=|x+2|+|x﹣a|的最小值,再由最小值大于4求得a的范围;(2)写出分段函数解析式,画出图形,数形结合列式求解.
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,四边形ABCD是矩形,E,M分别是AD,PD的中点,PE⊥BE,PA=PD=AD=2,AB=.
(1)求证:PB∥平面MAC.
(2)求证:平面MAC⊥平面PBE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质_____.(填入所有正确结论的序号)
①最大值为,图象关于直线对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC= ,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为原点,焦点F与圆的圆心重合.
(1)求抛物线C的标准方程;
(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;
(3)若弦过焦点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列的前项和为,公比,,.
(1)求等比数列的通项公式;
(2)设,求的前项和.
【答案】(1)(2)
【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.
(1)等比数列的前项和为,公比,①,
②.
②﹣①,得,则,
又,所以,
因为,所以,
所以,
所以;
(2),
所以前项和.
【点睛】
裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.
【题型】解答题
【结束】
22
【题目】已知函数的图象上有两点,.函数满足,且.
(1)求证:;
(2)求证:;
(3)能否保证和中至少有一个为正数?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,AC∩BD=O,点P在底面的射影为点O,PO=3,点E为线段PD中点.
(1)求证:PB∥平面AEC;
(2)若点F为侧棱PA上的一点,当PA⊥平面BDF时,试确定点F的位置,并求出此时几何体F﹣BDC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com