精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右顶点分别为A,B,直线l斜率大于0,且l经过椭圆的右焦点F,与椭圆交于两点P,Q,若△AFP,△BFQ的面积分别为S1,S2,若,则直线l的斜率为_____

【答案】

【解析】

由已知写出S1,S2,结合,可得P,Q的纵坐标的关系,设直线l:x=my+1,与椭圆方程联立,化为关于y的一元二次方程,结合根与系数的关系求m,则斜率可求.

如图,由椭圆

S1|AF||PF|sin∠AFP=|PF|sin∠AFP,

S2|BF||QF|sin∠BFQ=|QF|sin∠BFQ,其中sin∠AFP= sin∠BFQ,,得|QF|=2|PF|,即yQ=-2yP(yP>0),设直线l:x=my+1联立,可得(3m2+4)y2+6my-9=0,解得yP,yQ

m=∴直线方程为则直线的斜率为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆: (a>b>0),左右焦点分别是F1 , F2 , 焦距为2c,若直线 与椭圆交于M点,满足∠MF1F2=2∠MF2F1 , 则离心率是(
A.
B. -1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的方程:

(1) 虚轴长为12,离心率为

(2) 焦点在x轴上,顶点间距离为6,渐近线方程为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R.a,b∈R,若此函数同时满足:
①当a+b=0时,有f(a)+f(b)=0;
②当a+b>0时,有f(a)+f(b)>0,
则称函数f(x)为Ω函数.
在下列函数中:
①y=x+sinx;
②y=3x﹣( x
③y=
是Ω函数的为 . (填出所有符合要求的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

求分数在[120,130)内的频率,并补全这个频

率分布直方图;

统计方法中,同一组数据常用该组区间的中点

值作为代表,据此估计本次考试的平均分;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.

(1)若点P的横坐标为1,求切线PA,PB的方程;

(2)若点P的纵坐标为a,且在圆M上存在点Q到点P的距离为1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x,若对任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线E 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:

课程

数学1

数学2

数学3

数学4

数学5

合计

选课人数

180

540

540

360

180

1800

为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

同步练习册答案