分析 过E点作EM⊥AD,则由题意知∠EFM是直线EF与平面ABCD所成角,由此能求出直线EF与平面ABCD所成角的正弦值.
解答 解:∵ABCD是矩形,PA⊥平面ABCD,
∴平面PAD⊥平面ABCD,过E点作EM⊥AD,则由题意知EM⊥平面ABCD,
连结EF、FM,则∠EFM是直线EF与平面ABCD所成角,
∵$\frac{PE}{ED}=\frac{BF}{FA}=\frac{1}{2}$,∴EM=$\frac{2}{3}PA=\frac{2}{3}a$,MA=$\frac{1}{3}AD=\frac{1}{3}a$,FA=$\frac{2}{3}AB=\frac{2\sqrt{2}}{3}a$,
在直角△AMF中,MF=$\sqrt{A{M}^{2}+A{F}^{2}}$=$\sqrt{\frac{{a}^{2}}{9}+\frac{8{a}^{2}}{9}}$=a,
在直角△EMF中,EF=$\sqrt{E{M}^{2}+F{M}^{2}}$=$\sqrt{\frac{4{a}^{2}}{9}+{a}^{2}}$=$\frac{\sqrt{13}a}{3}$,
∴$sin∠EFM=\frac{EM}{EF}$=$\frac{2\sqrt{13}}{13}$.
∴直线EF与平面ABCD所成角的正弦值为$\frac{2\sqrt{13}}{13}$.
点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
100g食物 | 碳水化合物/g | 蛋白质/g | 脂肪/g |
A | |||
B |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com