【题目】已知函数,.
(1)当为何值时,直线是曲线的切线;
(2)若不等式在上恒成立,求的取值范围.
【答案】(1) .(2) .
【解析】
(1)先令,求其导数,设切点为,由直线是曲线的切线,得到,用导数的方法研究函数的单调性,即可求出结果;
(2)先令,对其求导,分别讨论和两种情况,结合题意,即可得到结果.
(1)令,,
设切点为,则,,则.
令,,则函数在上单调递减,在上单调递增,且,所以.
(2)令,则,
①当时,,所以函数在上单调递减,
所以,所以满足题意.
②当时,令,得,
所以当时, ,当时,.
所以函数在上单调递增,在上单调递减.
(ⅰ)当,即时,在上单调递增,
所以,所以,此时无解.
(ⅱ)当,即时,函数在上单调递增,在上单调递减.
所以 .
设 ,则,
所以在上单调递增,
,不满足题意.
(ⅲ)当,即时,在上单调递减,
所以,所以 满足题意.
综上所述:的取值范围为.
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在平面直角坐标系中,曲线的参数方程为(为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;
(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查居民对城市共享单车的满意度,随机选取了100人进行问卷调查,并将问卷中的100人根据其满意度评分值按照分为5组,得到号如图所示的频率分布直方图.
(Ⅰ)求满意度分值不低于70分的人数.
(Ⅱ)已知满意度分值在内的男性与女性的比为3:4,为提高共享单车的满意度,现从满意度分值在的人中随机抽取2人进行座谈,求这2人中只有一位男性的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com