精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,,侧面为等边三角形.

(Ⅰ)证明:

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)详见解析;(Ⅱ)

【解析】

(Ⅰ)取的中点,先证明平面,再根据线面垂直的性质可得

(Ⅱ)建立空间直角坐标系,利用向量法求解线面角即可.

(Ⅰ)证明:如图1,取的中点,连接

由已知得四边形为矩形,因此.

又∵侧面为等边三角形,∴.

,∴平面

平面,∴.

(Ⅱ)如图2,由(Ⅰ)知,过平面

两两垂直,

分别以的方向为轴的正方向,建立空间直角坐标系

,且在等边三角形中,易知

∴在中,由余弦定理得,

,∴

.∴.

设平面的法向量

,得

,则

设直线与平面所成角为

,则

∴直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧,并将两弧各五等分,分点依次为以及.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班共有45人,学号依次为12345,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为62433的同学在样本中,那么样本中还有两个同学的学号应为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数上的最值;

(Ⅱ)若对,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记

1)求出的所有可能情形;

2)若会有小礼品赠送,求该业主获得小礼品的概率,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的左、右焦点,点P上异于顶点的点,直线l分别与以为直径的圆相切于AB两点,若向量的夹角为,则=___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,直线与曲线相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知扇环如图所示,是扇环边界上一动点,且满足,则的取值范围为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.

是否满意

组别

不满意

满意

合计

16

34

50

2

45

50

合计

21

79

100

1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;

2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?

附表:

附:

查看答案和解析>>

同步练习册答案