【题目】 为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m2的三级污水处理池,由于地形限制,长、宽都不能超过16 m,如果池外壁建造单价为400元/m2,中间两条隔墙建造单价为248元/m2,池底建造单价为80元/m2(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与x的函数关系式,并指出定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价.
【答案】(1) y=800x++16 000,≤x≤16.
(2) 当长为16 m,宽为12.5 m时,总造价y最低,为45 000元.
【解析】
试题(1)先求面积,再乘以对应价格,求和得总造价,根据长、宽都不能超过16 m要求确定定义域(2)利用导数可得函数为定义域上单调减函数,再根据单调性求最小值
试题解析:解:(1)矩形平面图的两边长分别为x m, m,
根据题意,得
解得≤x≤16.
y=×400+×248+16 000
=800x++16 000,≤x≤16.
(2)y′=800-,
当≤x≤16时,y′<0,函数在上为减函数,
所以当长为16 m,宽为12.5 m时,总造价y最低,为45 000元.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值与最小值之差为3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线经过点,其倾斜角为,在以原点为极点,轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线的极坐标方程为
(Ⅰ)若直线与曲线有公共点,求的取值范围;
(Ⅱ)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 设函数f(x)=(x-1)2+bln x,其中b为常数.
(1)当b>时,判断函数f(x)在定义域上的单调性;
(2)若函数f(x)有极值点,求b的取值范围及f(x)的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定直线:的距离比到定点的距离大2.
(1)求动点的轨迹的方程;
(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积S=sinC,求a和b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com