精英家教网 > 高中数学 > 题目详情

【题目】 为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m2的三级污水处理池,由于地形限制,长、宽都不能超过16 m,如果池外壁建造单价为400元/m2,中间两条隔墙建造单价为248元/m2,池底建造单价为80元/m2(池壁厚度忽略不计,且池无盖).

(1)写出总造价y(元)与x的函数关系式,并指出定义域;

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价.

【答案】(1) y=800x+16 000,x≤16.

(2) 当长为16 m,宽为12.5 m时,总造价y最低,为45 000元.

【解析】

试题(1)先求面积,再乘以对应价格,求和得总造价,根据长、宽都不能超过16 m要求确定定义域(2)利用导数可得函数为定义域上单调减函数,再根据单调性求最小值

试题解析:解:(1)矩形平面图的两边长分别为x m, m,

根据题意,得

解得x≤16.

y×400+×248+16 000

=800x+16 000,x≤16.

(2)y′=800-

x≤16时,y′<0,函数在上为减函数,

所以当长为16 m,宽为12.5 m时,总造价y最低,为45 000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=logax1)(a0,且a≠1).

1)若fx)在[29]上的最大值与最小值之差为3,求a的值;

2)若a1,求不等式f2x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若在平面内的正投影为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,则下列叙述错误的是( )

A.时,则的夹角为钝角

B.的最小值为

C.共线的单位向量只有一个为

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线经过点,其倾斜角为,在以原点为极点,轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线的极坐标方程为

(Ⅰ)若直线与曲线有公共点,求的取值范围;

(Ⅱ)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设函数f(x)=(x-1)2bln x,其中b为常数.

(1)当b>时,判断函数f(x)在定义域上的单调性;

(2)若函数f(x)有极值点,求b的取值范围及f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离比到定点的距离大2.

(1)求动点的轨迹的方程;

(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积SsinC,求ab的值.

查看答案和解析>>

同步练习册答案