精英家教网 > 高中数学 > 题目详情

【题目】已知函数有两个极值点,且.

1)求实数的取值范围;

2)若,证明:.

【答案】1 2)证明见解析

【解析】

1上有两个不等的零点.设,由研究上的单调性和极值,由极值确定有零点个数,得的范围;

2)由(1.,要证,只需证,由,然后令,把表示,这样就转化为的函数,通过研究的函数的单调性和最值得出结论.

1的定义域为

,则内有两个变号零点,

,令

递增,在递减

又当时,,在没有两个零点

时,

(令,因为,所以递减,

使得使得

时,,∴递减

时,,∴递增

时,,∴递增;

时,递减

分别为的极小值与极大值点

综上,的取值范围为

2)由(1)知,∴,∴

t时,∴

要证,只需证

∵由(1

,即

,则,∴,∴

下面说明

,设

递增,∴

成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于BC两点,当轴时,三角形ABC的面积为18

求椭圆的方程;

如图,当动直线BC斜率存在且不为0时,直线分别交直线ABAC于点MN,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为参数).直线的参数方程为参数).

)求曲线在直角坐标系中的普通方程;

)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论的单调区间;

2)证明:若,对任意的,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程

(2)射线与曲线分别交于两点(异于原点),定点的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆的直径,点是圆上异于的点,直线平面分别是的中点.

(Ⅰ)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;

(Ⅱ)设,求二面角大小的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C =1ab0),定义椭圆C上的点Mx0y0)的“伴随点”为

1)求椭圆C上的点M的“伴随点”N的轨迹方程;

2)如果椭圆C上的点(1)的“伴随点”为(),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;

3)当a=2b=时,直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.

查看答案和解析>>

同步练习册答案