【题目】已知函数有两个极值点,且.
(1)求实数的取值范围;
(2)若,证明:.
【答案】(1) (2)证明见解析
【解析】
(1)在上有两个不等的零点.设,由研究在上的单调性和极值,由极值确定有零点个数,得的范围;
(2)由(1),,.,,要证,只需证,由得,然后令,把用表示,这样就转化为的函数,通过研究的函数的单调性和最值得出结论.
(1)的定义域为,
设,则在内有两个变号零点,
令得,令得
∴在递增,在递减
∴
又当时,,在没有两个零点
当时,
(令,因为,所以在递减,
)
∴使得,使得
当时,,∴递减
当时,,∴递增
当时,,∴递增;
当时,,递减
∴分别为的极小值与极大值点
综上,的取值范围为
(2)由(1)知,∴,∴
∴t时,∴
要证,只需证
∵由(1)得
∴得,即
设,则,∴,∴
∴
下面说明
即,设
∴
∴递增,∴即
∴成立
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于B,C两点,当轴时,三角形ABC的面积为18.
求椭圆的方程;
如图,当动直线BC斜率存在且不为0时,直线分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程(为参数).直线的参数方程(为参数).
(Ⅰ)求曲线在直角坐标系中的普通方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点, .
(1)当长为1分米时,求折卷成的包装盒的容积;
(2)当的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)射线与曲线分别交于两点(异于原点),定点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆的直径,点是圆上异于,的点,直线平面,,分别是,的中点.
(Ⅰ)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(Ⅱ)设,求二面角大小的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.
(1)求椭圆C上的点M的“伴随点”N的轨迹方程;
(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;
(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com