已知在四棱锥中,底面是矩形,平面,,,分别是的中点.
(1)求证:平面;
(2)求二面角的余弦值.
(1)证明过程详见解析;(2).
【解析】
试题分析:本题主要以四棱锥为几何背景,考查线面平行的判定和二面角的求法,可以运用传统几何法,也可以用空间向量方法求解,突出考查空间想象能力和计算能力.第一问,利用线面平行的判定定理,先找出面内的一条线,利用平行四边形证明,从而证明线面平行;第二问,用向量法解题,先建立直角坐标系,求出2个平面的法向量,再求夹角.
试题解析: (1)证明:取的中点,连结.
∴,且,
又,∴.
又是的中点,且,
∴,∴四边形是平行四边形.
∴.
又平面,平面.
∴平面.(6分)
(2)解:以为原点,如图建立直角坐标系,则,,, ,,,.
设平面的法向量为,,.
则可得,令,则.
易得平面的法向量可为,
;
如图,易知二面角的余弦值等于,即为. (12分)
考点:1.线面平行的判定定理;2.向量法求二面角.
科目:高中数学 来源:2015届云南省高二上学期期中考试文科数学试卷(解析版) 题型:解答题
如图,已知在四棱锥中,底面是矩形,平面,、分别是、的中点.
(Ⅰ)求证:平面;
(Ⅱ)若与平面所成角为,且,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年贵州省六高三第一次考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面,,,是的中点, 是线段上的点.
(I)当是的中点时,求证:平面;
(II)要使二面角的大小为,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三下学期模拟冲刺考试理科数学试卷(解析版) 题型:解答题
(本小题满分l2分)已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.
(1)证明:;
(2)判断并说明上是否存在点,使得∥平面;
(3)若与平面所成的角为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高考模拟预测卷(三)理科数学试卷(解析版) 题型:解答题
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.
(1)证明:;
(2)判断并说明上是否存在点,使得∥平面;
(3)若与平面所成的角为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com