精英家教网 > 高中数学 > 题目详情
抛物线C的顶点在原点,焦点F与双曲线
x2
3
-
y2
6
=1
的右焦点重合,过点P(2,0)且斜率为1的直线l与抛物线C交于A、B两点.
(1)求弦长|AB|;   (2)试判断以弦AB为直径的圆与抛物线准线的位置关系.
分析:(1)双曲线右焦点为F(3,0),它也是抛物线的焦点.所以抛物线方程为y2=12x.由直线l的方程为y=x-2,由此能求出弦长|AB|.
(2)弦中点坐标为x=
x1+x2
2
=
8
 
 
 
 
y=x-2=6
,所以以AB为直径的圆的圆心为(8,6),半径r=2
30
,又准线为x=-3.由此能得到圆与抛物线准线相离.
解答:解:(1)双曲线右焦点为F(3,0),
它也是抛物线的焦点.
∴抛物线方程为y2=12x.…(2分)
又直线l的方程为y=x-2,
设A(x1,y1),B(x2,y2),
y=x-2
y2=12x

得x2-16x+4=0…(4分)
∴弦长|AB|=
(1+1)(162-4×4)
=4
30
.…(6分)
(2)弦中点坐标为x=
x1+x2
2
=
8
 
 
 
 
y=x-2=6
,…(8分)
∴以AB为直径的圆的圆心为(8,6),
半径r=2
30

又准线为x=-3,
∴圆心到准线的距离d=8+3=11>2
30
=r

∴圆与抛物线准线相离.…(12分)
点评:本题主要考查圆锥曲线标准方程,简单几何性质,直线与圆锥曲线的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为(0,1),点P(0,m)(m≠0).
(1)求抛物线的方程;
(2)设过点P且斜率为1的直线交抛物线C于A、B两点,点P关于原点的对称点Q,若m<0,求使得△QAB面积最大的m的值;
(3)设过P点的直线交抛物线C于M、N两点,是否存在这样的点P,使得
1
|PM|
+
1
|PN|
为定值?若存在,求点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点坐标为F(2,0),点P的坐标为(m,0)(m≠0),设过点P的直线l交抛物线C于A,B两点,点P关于原点的对称点为点Q.
(1)当直线l的斜率为1时,求△QAB的面积关于m的函数表达式.
(2)试问在x轴上是否存在一定点T,使得TA,TB与x轴所成的锐角相等?若存在,求出定点T 的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C与直线y=x-4相交于不同的两点A、B,求证:OA⊥OB.

查看答案和解析>>

同步练习册答案