【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4元/立方米收费,超出立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米, 至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.
科目:高中数学 来源: 题型:
【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:
数学成绩 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成绩 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求这7名学生的数学成绩的极差和物理成绩的平均数;
(2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?
下列公式与数据可供参考:
用最小二乘法求线性回归方程的系数公式:,;
,,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点且斜率为1的直线与抛物线交于、两点,且.
(1)求抛物线的方程;
(2)点是抛物线上异于、的任意一点,直线、与抛物线的准线分别交于点、,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根据散点图判断,与哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程.
(3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从地到地有两条道路可以到达,走道路①准点到达的概率为,不准点到达的概率为;走道路②准点到达的概率为,不准点到达的概率为.若甲乙两车走道路①,丙车由于其他原因走道路②,且三辆车是否准点到达相互之间没有影响.
(1)若三辆车中恰有一辆车没有准点到达的概率为,求走道路②准点到达的概率;
(2)在(1)的条件下,求三辆车中准点到达车辆的辆数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率是,A、B分别为椭圆的左顶点、上顶点,原点O到AB所在直线的距离为.
(I)求椭圆C的方程;
(Ⅱ)已知直线与椭圆相交于不同的两点M,N(均不是长轴的端点),,垂足为H,且,求证:直线恒过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com