精英家教网 > 高中数学 > 题目详情

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

【答案】3;(10.5.

【解析】试题分析:(1)根据水量的频率分布直方图知月用水量不超过立方米的居民占,所以至少定为;(2)直接求每个数据用该组区间的右端点值与各组频率的乘积之和即可.

试题解析:(1)由用水量的频率分布直方图知,

该市居民该月用水量在区间内的频率依次为

所以该月用水量不超过立方米的居民占,用水量不超过立方米的居民占.依题意, 至少定为

2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:

组号

1

2

3

4

5

6

7

8

分组









频率

0.1

0.15

0.2

0.25

0.15

0.05

0.05

0.05

根据题意,该市居民该月的人均水费估计为:

(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程有四个不相等的实数根,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:

数学成绩

88

83

117

92

108

100

112

物理成绩

94

91

108

96

104

101

106

1)求这7名学生的数学成绩的极差和物理成绩的平均数;

2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?

下列公式与数据可供参考:

用最小二乘法求线性回归方程的系数公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点且斜率为1的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)点是抛物线上异于的任意一点,直线与抛物线的准线分别交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).

1.63

37.8

0.89

5.15

0.92

18.40

表中.

1)根据散点图判断,哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程.

3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点关于原点的对称点为为其右焦点,若,设,且,则该椭圆的离心率的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从地到地有两条道路可以到达,走道路①准点到达的概率为,不准点到达的概率为;走道路②准点到达的概率为,不准点到达的概率为.若甲乙两车走道路①,丙车由于其他原因走道路②,且三辆车是否准点到达相互之间没有影响.

1)若三辆车中恰有一辆车没有准点到达的概率为,求走道路②准点到达的概率

2)在(1)的条件下,求三辆车中准点到达车辆的辆数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率是,A、B分别为椭圆的左顶点、上顶点,原点OAB所在直线的距离为.

I)求椭圆C的方程;

(Ⅱ)已知直线与椭圆相交于不同的两点M,N(均不是长轴的端点),,垂足为H,且,求证:直线恒过定点.

查看答案和解析>>

同步练习册答案