精英家教网 > 高中数学 > 题目详情
13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点的渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{9}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{9}=1$D.$\frac{x^2}{8}-\frac{y^2}{4}=1$

分析 利用焦点的渐近线的距离为2,双曲线的一条渐近线与直线x-2y+3=0平行,求出a,b,即可得到双曲线方程.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点的渐近线的距离为2,可得b=2;
双曲线的一条渐近线与直线x-2y+3=0平行,可得$\frac{b}{a}=\frac{1}{2}$,解得a=4.
所求双曲线方程为:$\frac{x^2}{16}-\frac{y^2}{4}=1$.
故选:A.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),给出以下四个论断:
①它的周期为π;
②它的图象关于直线x=$\frac{π}{12}$对称;
③它的图象关于点($\frac{π}{3}$,0)对称;
④在区间(-$\frac{π}{6}$,0)上是增函数,
以其中两个论断为条件,另两个论断作结论,写出你认为正确的一个命题,条件①②结论③④.(注:填上你认为正确的一种答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=sin(2x+$\frac{π}{3}$)的图象可以由函数y=sin2x的图象(  )得到.
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=sinx+1与y=$\frac{x+2}{x}$在[-a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(xm,ym),则(x1+y1)+(x2+y2)+…+(xm+ym)=(  )
A.0B.mC.2mD.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga$\frac{x-2a}{x+2a}$,g(x)=loga(x+2a)+loga(4a-x),其中a>0,且a≠1.
(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)已知区间D=[2a+1,2a+$\frac{3}{2}$]满足3a∉D,设函数h(x)=f(x)+g(x),h(x)的定义域为D,若对任意x∈D,不等式|h(x)|≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某空间几何体的三视图如图所示,则该几何体的表面积是$32+8\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,数列{bn}的前n项和为Bn
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求数列{cn}的前n项和Cn
(3)证明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且满足$\frac{2a-b}{cosB}=\frac{c}{cosC}$.
(1)求角C的值;
(2)若c=7,△ABC的面积为$10\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

查看答案和解析>>

同步练习册答案